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Summary. Platelets play a central role in the arrest of

bleeding after damage to a blood vessel and in the

development of thrombosis. Platelets rapidly respond

after interaction with sub-endothelial components and

release cargo from their storage granules. The three

principal granule types of platelets are a-granules, dense
granules and lysosomes. Timed release of granule con-

tents and regulated expression of critical receptors are

essential for maintenance of the platelet thrombus,

yet also have important functions beyond hemostasis

(i.e. inflammatory reactions and immune responses).

a-granules store adhesive molecules such as von Wille-

brand factor and fibrinogen, growth factors and inflam-

matory and angiogenic mediators, which play crucial

roles in inflammatory responses and tumor genesis. The

a-granules comprise a group of subcellular compartments

with a unique composition and ultrastructure. Recent

studies have suggested that differential secretory kinetics

of a-granule subtypes is responsible for a thematic

release of adhesive and inflammatory mediators. In addi-

tion, new results indicate that activation-dependent syn-

thesis and release of cytokines also contribute to the

inflammatory role of platelets. We will discuss the vari-

ous methods that platelets use to regulate secretory pro-

cesses and how these relate to potential differential

secretion patterns, thereby promoting adhesiveness and/

or inflammatory functions. We will focus on the hetero-

genic granule population, open canalicular system (OCS)

plasticity, the role of contractile and mechanobiological

forces, and the fusogenic machinery.
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Introduction

Platelets circulate at variable flow rates in our bloodstream

and are activated following binding to components such as

von Willebrand factor (VWF) and collagen that are exposed

during vascular injury [1]. Platelet secretion is tightly regu-

lated and the result of various signaling pathways, which

increase cytosolic Ca2+, thereby promoting fusion of plate-

let granules with the plasma membrane (PM) and release of

their contents. Secretion dynamics are crucial for stabilizing

platelet adhesion, progression of platelet‒platelet interac-

tions and building of a stable platelet thrombus [2]. Besides

a crucial role in primary hemostasis, the release of platelet

contents also has an important role in inflammatory reac-

tions. Platelets are a rich source of chemokines, cytokines

and growth factors, which are predominantly packaged in

the main storage compartment, the a-granules [3]. These

mediators are released at the sites of injury, thereby promot-

ing wound repair and vascular remodeling [4] through sig-

naling of target cells and leukocyte tethering [5]. As a

consequence, platelet dysfunction can lead to bleeding dis-

orders or thrombosis, but is also associated with inflamma-

tion, immunological responses [6] and cancer progression

[7]. In contrast to previous perceptions, recent studies

showed that platelets can synthesize and release IL-1b, sug-
gesting that newly synthetized proteins also contribute to

platelet function in inflammation [8]. Here we highlight

recent progress in understanding the platelet secretory

response, and discuss subjects such as granule subtypes,

cargo distribution, platelet contraction, mechanobiology

and OCS plasticity, and SNARE-dependent fusion.

Platelet secretory granules

a-granules

a-granules are the most abundant secretory organelles

in platelets (50–80 per platelet). They contain a large
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variety of adhesive proteins that are important for pri-

mary hemostasis, including the adhesive proteins VWF,

fibrinogen, fibronectin, vitronectin and thrombospondin

[9,10]. These proteins are important for platelet adhesive

properties and building of a stable thrombus. Platelet a-
granules also contain a large number of mediators that

have a function in coagulation, wound repair, inflamma-

tion and angiogenesis. These include, amongst others,

platelet factor 4 (PF4), interleukin-8 (IL-8), platelet-

derived growth factor (PDGF), transforming growth fac-

tor–b (TGF-b) and vascular endothelial growth factor

(VEGF) [3]. PF4, b-thromboglobulin (CXCL7) and Ran-

tes (CCL5) are the most abundant chemokines in plate-

let a-granules. PF4, CXCL7 and IL-8 released from

activated platelets modulate inflammation by attracting

neutrophils [7,11].

The mechanism by which adhesive and inflammatory

cargo is packaged in storage granules is incompletely

understood. a-granules are formed from multivesicular pre-

cursor organelles that acquire a cargo from the biosynthetic

route (VWF, b-thromboglobulin and PF4) and endocytosis

(fibrinogen, albumin and IgG) [12]. a-granules frequently

harbor clathrin coats, an attribute shared with sorting

organelles such as the trans-Golgi network (TGN) and

endosomes. a-granules thus have properties of secretory

organelles as well as late endosomes, which qualify them as

lysosome-related organelles (LROs). LROs include also the

platelet dense granules, Weibel-Palade bodies (WBPs) in

endothelial cells, melanosomes in melanocytes, and lamel-

lar bodies in type II lung cells [13].

The classical view that platelet a-granules represent a

homogeneous population of organelles has been chal-

lenged by several groups. Italiano reported that anti-an-

giogenic factors, such as endostatin, reside in different

granules to pro-angiogenic VEGF [14], while electron

tomography showed the presence of different classes of a-
granules [15], including spherical, multivesicular and

tubular subtypes (Fig. 1). The multivesicular class proba-

bly reflects the endosomal connection. The biogenesis of

the tubular a-granule population remains unclear. Platelet

a-granules resemble the WPBs in several ways. Both orga-

nelles are involved in hemostasis, inflammation and

angiogenesis and share crucial proteins, including VWF,

P-selectin and CD63. Similar to WPBs, VWF in a-gran-
ules is compartmentalized and organized in tubular helix

assemblies (Fig. 1). The tight packing of VWF in tubular

structures is responsible for the tubular cigar shape of

WPBs [16]. The VWF tubules in a-granules, however, are
much shorter and occur far less frequently, making it

unlikely that VWF packing is responsible for shaping the

tubular a-granules [15].

Dense granules

Platelet dense granules (three to eight per platelet) form

the second major secretory compartment. They contain

mainly small molecules such as ADP, ATP, serotonin,

calcium, pyrophosphate and polyphosphate. Dense gran-

ules originate from endosomal precursors rather than

TGN [17], and play a crucial role in primary hemostasis

by acting as a feedback mechanism, stimulating the plate-

let P2Y12 receptor via release of ADP. Dense granules

have characteristics in common with acidocalcisomes

and chromaffin granules [18]. They are acidic in nature

and accumulate acidophilic dyes such as acridine orange

and mepacrine. Based on their high nucleotide content,

dense granules also possess a high affinity for typical

nuclear stains (dapi) and uranium ions [19] (arrow heads

in Fig. 2A). The predominant calcium and phosphate

content is also a reason for their electron opaque appear-

ance in whole-mount electron microscopy (EM) and cryo-

EM preparations (Fig. 2A, inset). Dense granules are dif-

ficult to preserve in frozen thin sections, where the dense

core content is frequently lost, leaving only their limiting

membranes (Fig. 2B). Dense granules contain the lysoso-
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Fig. 1. Platelet a-granule subtypes: (A) tubular a-granule; (B,C) protein
segregation in a-granules; (D,D’) luminal membrane domains in a-gran-
ules; (E,F) VWF cargo assembled in peripheral tubules, arrowheads in

(E) indicate luminal vesicles; (G) rotary shadow image of VWF multi-

meric protein. This research was originally published in Blood 2010;

116: 1147–56, © the American Society of Hematology [15].
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Fig. 2. The platelet secretory compartment. (A) Platelet a-granules
(a), dense granules (arrowheads and d) and lysosomes (ly). (B) Local-

ization of serotonin in dense granules.
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mal membrane proteins CD63 and LAMP1/2 [20], but

also non-lysosomal proteins such as P-selectin, GPIb and

aII-b3 integrin [20]. These membrane proteins are translo-

cated to the cell surface upon platelet activation. Dense

granules contain rab27a and b [21,22], two small GTP-

ases required for content release.

Lysosomes

Platelet lysosomes contain acid hydrolases (cathepsins, hex-

osaminidase, b-galactosidase, arylsulfatase, b-glucuronidase
and acid phosphatase) as their most important cargo,

and similarly to dense granules they express CD63 and

LAMP-1/2. Platelet lysosomal functions have not been

well studied. Lysosomes serve a role in the digestion of

phagocytic and cytosolic components, similar to that in

nucleated cells. Secretion of the lysosomal content may

have important extracellular functions, such as support-

ing receptor cleavage, fibrinolysis and degradation of

extracellular matrix components, and remodeling of the

vasculature. Platelet lysosomes may also contribute to a

process termed unconventional secretion, described in

nucleated cells [23]. Platelets have a constitutively active

autophagy pathway, which is up-regulated by starvation

[24]. The cytosolic substrates that are a target for autop-

hagic sequestration in platelets are unknown. Platelets

have been shown to synthesize proteins (tissue factor, IL-

1b and Bcl-3) using mature and pre-messenger RNA.

These proteins are probably produced in the cytoplasm

and are released upon activation [8] via an incompletely

understood mechanism. An interesting possibility could

be that selective autophagic targeting and (auto)-lysoso-

mal secretion may provide a way for these cytosolic pro-

teins to exit the cell.

T-Granules

Recently, a novel type of secretory granule has been iden-

tified, termed T-granules, given their tubular morphology.

T-granules contain TLR9, PDI and VAMP-8 [25]. Platelet

spreading on glass and stimulation with type IV collagen

increase the surface expression of TLR9, possibly via the

SNARE proteins VAMP-8 and VAMP-7. The study sug-

gests that T-granules are recruited to the cell surface and

contribute to secretion. However, PDI is a resident ER

protein and is exclusively localized to the dense tubular

system (DTS) [26]. Electron tomography has shown that

the DTS belongs to a reticular membrane network and

not an isolated granule population [15]. Hence, the term

T-granule is somewhat misleading when referring to a

reticular compartment. Several studies have shown that

PDI is released from activated platelets [27,28] and that

increased cell surface expression contributes to platelet

thrombus formation [29]. However, a direct fusion of

DTS membranes with the cell surface has so far not been

established.

Platelet activation and thematic secretion

Platelets harbor both inflammatory mediators and angio-

genic factors with antagonistic function. They are mainly

stored in a-granules, although the precise location of

some of them has not been explored [3]. The specific

intracellular distribution of molecules with apparent

antagonistic function raises questions regarding a-granule
secretory behavior. Rapid release of adhesive cargo

(VWF and fibrinogen) is required to quickly respond to

vascular injury. Slow and prolonged release is more likely

to be essential for long-term processes such as recruitment

of inflammatory cells and platelet contribution to vascular

repair. Recent studies have suggested that circulating pla-

telets sequester angiogenesis regulatory proteins and dis-

tribute these to different a-granule subsets [30]. This

selective delivery to granule subpopulations was thought

to be responsible for differential and thematic secretion

behavior upon PAR1 and PAR4 stimulation [14]. Other

studies have shown that fibrinogen and VWF are differ-

entially packaged, which possibly causes different release

rates [31]. This is plausible because VWF and fibrinogen

reach the a-granules via distinct itineraries (cf. above).

Given these features, subpopulations of a-granules may

respond to specific agonists and hence release granule

contents in a thematic fashion [32]. Earlier studies have

shown that cargo is heterogeneously distributed within a-
granules [33,34]. Recently, quantitative super-resolution

immunofluorescence microscopy was used to map the

protein co-distribution in resting platelets [35], demon-

strating that cargo within individual a-granules is spa-

tially segregated, apparently without thematic selectivity.

Ultrastructural approaches confirmed that a heteroge-

neous a-granule population exists where cargo is spatially

packaged into distinct zones. This raises the following

important questions: (i) to what extent is thematically

diverse cargo released at different kinetics and (ii) how is

this regulated, considering that molecules with antagonis-

tic function may originate from the same granule?

In a systematic analysis of the human platelet secre-

tome, Jonnalagadda et al. investigated the time-dependent

release of many cargo molecules and found distinct secre-

tion rates but limited differences in thematic release [36].

In a recent proteomic study van Holten et al. evaluated

platelet granule secretion after PAR-1 and PAR-4 stimu-

lation and reported comparable release [37]. Together,

these results suggest that secretion is regulated by other

factors such as intragranular segregation, contraction, or

alternative routes to and fusion with the OCS and PM.

Interestingly, recent studies have demonstrated that a sub-

set of the a-granules migrate towards the platelet periph-

ery during spreading [38]. It was suggested that different

VAMP isoforms may associate with discrete a-granule
subpopulations, thereby contributing to differential secre-

tion. Importantly, flow-adherent platelets release vWF

strings in a polarized fashion, providing an array of
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binding sites for incoming platelets (H. Heijnen, unpub-

lished results), suggesting that granule dynamics and

polarized secretion are probably tightly connected.

Timed release of thematically different cargo could also

stem from a dilution of the protein gradient within the

compartment once the granule membrane has fused with

the PM or OCS. Early studies using cryo-fixation meth-

ods have shown that a- and dense granules form transient

fusion pores with the PM [39,40]. Such fusion pores may

deliver small molecules, while larger proteins are retained.

Dense granules and a-granules have different secretory

properties, but harbor the same fusogenic protein profile.

Possibly distinct signaling pathways contribute to the dif-

ferential release properties of both types of granules (see

below).

Comparison of cargo release between platelets and
endothelial cells

Platelet a-granules resemble WBPs in many ways. Both

organelles are involved in the same processes and share

content and trafficking proteins [41,42]. It has been well

established that VWF is stored as helical tubules in

WPBs, a characteristic organization also seen in platelet

a-granules. WPB secretion may be regulated by several

simultaneously operating mechanisms [43]: (i) differential

release as a result of the heterogeneous nature of the

organelle, (ii) time-dependent release via formation of

fusion pores and kiss and run exocytosis, (iii) the involve-

ment of selective fusogenic proteins (SNAREs), and (iv)

actin-anchoring-based mechanisms (rab27a/b). A special

type of homotypic fusion has recently been demonstrated

in WPBs prior to exocytosis, which generates so-called

secretory pods. This pathway might represent a selective

way to generate unfurled VWF strings [44]. A variant of

this secretory theme may operate in platelets. Stimulus-

dependent compound fusion occurs when a-granules fuse

with each other and/or the OCS [40,45]. This process may

create a secretory pod variant for unwinding VWF poly-

mers, as described for WPBs.

Platelet secretion and the cytoskeleton

Microtubules and the membrane skeleton are essential for

maintenance of the platelet discoid shape and the integ-

rity of the PM. Upon activation platelets exhibit an actin-

myosin-based contraction, triggered by an increase in

cytosolic calcium [46]. Inter-platelet transmission of plate-

let contractile forces and release of adhesive cargo are

both essential for stabilization of the thrombus. Early

in vitro observations have shown that platelet secretion is

accompanied by granule centralization, implying that

actin-myosin-dependent contractile forces facilitate the

release of granule contents [47,48]. The exact mechanism

by which reorganization of the actin cytoskeleton affects

granule fusion events remains poorly understood. Con-

traction-induced targeting of secretory granules to the cell

center may help to closely position them toward OCS

and/or PM for secretion. Cytochalasins and latrunculin-A

have been shown to increase cargo release from dense

granules, indicating that actin depolymerization promotes

dense granule exocytosis [49,50]. A direct relationship

between actin and exocytosis has been demonstrated in

pancreatic acinar cells and chromaffin cells [51,52].

F-actin and myosin are associated with platelet a-granules
[49,53], and cortical actin has been reported to provide a

natural barrier as well as playing a facilitative role in reg-

ulated exocytosis in other nucleated cells [51,52,54]. Thus

far no data are available with respect to potential differ-

ences in the actin barrier between OCS and PM or

whether these contribute to differential fusion behavior.

Open canalicular system remodeling, shear forces and
cargo release

Although it is clear that the platelet cytoskeleton is linked

to platelet shape changes and modulation of granule

release, it is not clear to what extent forces generated by the

flowing blood affect granule release. A key cytoarchitec-

tural feature in platelet secretion is the OCS, a conduit

through which plasma components can ‘enter’ the platelet

and an intermediate for secretion [55]. Upon activation and

spreading secretory granules migrate to the cell center, a

process that is under the control of actin-myosin. This cen-

tralization enables a-granules to become closely apposed,

supporting delivery to the OCS and PM [45]. Secretion of

cargo via the OCS is generally slower than direct delivery

at the cell surface. A key determinant for the rate of this

process is the degree to which soluble cargo freely diffuses

within the OCS or is retained by counter receptors. During

platelet activation granule membrane proteins (P-selectin,

GLUT3 and GPIIb-IIIa) are incorporated into both the

OCS and PM [56,57] while other cell surface components

(i.e. GPIb) are (partially) redistributed to the platelet inte-

rior [58]. Local receptor availability and changes in avidity

may contribute to temporal retention of secreted products

in the OCS, thereby delaying cargo release.

The OCS provides the circulating platelet with a

unique membrane reservoir that is essential for platelet

remodeling during adhesion. Platelet spreading requires

consumption of the OCS membrane, whereby OCS-re-

tained cargo becomes externalized. Platelets sense and

respond to changes in their hemodynamic environment.

Shear forces generated by the flowing blood have a high

impact on membrane dynamics and release behavior. Pla-

telet interaction with VWF under high shear induces the

formation of long membrane tethers [59]. In addition,

calcium-dependent uncoupling of the PM and the

cytoskeleton, and shear forces have been shown to gener-

ate so-called flow-induced protrusions [60]. An interesting

question in this context is whether local shear forces reg-

ulate receptor-cargo binding properties. Shear-exposed
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soluble cargo is rapidly redistributed by the flow, while

OCS-retained cargo fulfills a prolonged function. Flow-

directed release and unwinding of platelet-bound VWF,

derived from expelled OCS, may function in a similar

fashion to that described for Weibel-Palade bodies.

Mechanism of granule release

Exocytosis of the platelet granule content is initiated and

regulated through activation of cell surface receptors and

involves granule tethering and docking followed by the

fusion of the granule with the PM (Fig. 3).

Features of SNARE proteins

Fusion of the granule membrane and PM is driven by

interactions between members of the soluble N-ethyl-

maleimide sensitive factor (NSF) attachment protein

(SNAP) receptors (SNAREs). The formation of specific

trans complexes between cognate partners present on a

granule (v-SNARE) and the PM (t-SNARE) provides the

energy required to fuse two opposing membranes [61].

v-SNAREs and most t-SNAREs (except SNAP-23, 25

and 29) are type II transmembrane proteins. The cyto-

plasmic tails of each contain a highly conserved helical

SNARE motif of 60–70 amino acids, while SNAP-23, 25

and 29 have two copies of this motif. The typical four-he-

lical bundle at the core of the SNARE complex is thus

formed by a t-SNARE of the SNAP-23, -25 and -29 sub-

family together with a transmembrane v-SNARE and

transmembrane t-SNARE [61].

SNAREs regulating platelet secretion

Over the years the SNARE paradigm of membrane

fusion in eukaryotes has been firmly established. In

accord with the highly specialized function and architec-

ture of platelets, their repertoire of SNARES is limited.

Platelet SNAREs include the v-SNAREs VAMP-2 (vesi-

cle associated membrane protein), VAMP-3, VAMP-7

and VAMP-8, SNAP-23, SNAP-29 and t-SNAREs, syn-

taxin-2, syntaxin-4, syntaxin-7 and syntaxin-11 [62]. In

spite of extensive biochemical and biophysical characteri-

zation, many SNARE protein complexes withstood eluci-

dation of their precise biological role, in part because of

redundancy, or promiscuous interactions in vitro or

assays that rely on ectopic expression of soluble trunca-

tion constructs. Two converging conditions greatly chan-

ged this situation, especially in hemopoietic cells.

Through the discovery of mutations in SNAREs and

accessory factors, as causative agents for a number of

human syndromes, and the development of knock-out

animal models we now have a much better understanding

of release pathways in platelets. In a VAMP-8 knock-out

mouse model mild agonist-evoked release was impaired

for all three granule types. Interestingly, although biogen-

esis of dense granules, lysosomes and a-granules was not

affected by the VAMP-8 deletion, the secretion pheno-

type of dense granules was less affected than that of lyso-

somes and a-granules [63]. Because high doses of agonist

bypass the VAMP-8 requirement, alternative VAMP-8-in-

dependent pathways need to be considered. Indeed,
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Fig. 3. Molecular model for platelet granule secretion. Schematic

depicting the various stages and proteins involved in the release of

platelet granule content. Once a resting platelet is activated, granules

become tethered to plasma membrane regions enriched in PI(4,5)P2.

The small GTPase rab27a in the active form associates with the teth-

ering factors munc13-4 and synaptotagmin-like protein 4, both of

which can associate with PI(4,5)P2 of the opposing plasma mem-

brane. The tethering process limits the distance between the granule

and plasma membrane, which allows SNARE proteins of granules

and the plasma membrane to pair and engage in the formation of

(pre)fusion SNARE complexes. The association with NSF causes

zippering of the opposing SNARE proteins and subsequent fusion of

the granule membrane with the plasma membrane. Molecular details

of the proteins and events are described in the text.
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VAMP-2 and VAMP-3 take on this task, albeit not as effi-

ciently. In mast cells the same hierarchy for granule release

has been observed, confirming the function of VAMP-8

and emphasizing the relationship between the granule types

and LROs in different types of hemopoietic cells [64].

The principal t-SNARE in platelets is syntaxin 11,

which associates with membranes via palmitoylation of

C-terminal cysteines. Its significance for LRO release

became apparent after the discovery that mutations in

STX-11 cause familial hemophagocytic lymphohistiocyto-

sis type 4 (FHL4), an autosomal recessive, life-threatening

immune disorder characterized by uncontrolled activation

of macrophages and cytotoxic T lymphocytes (CTL) [65].

In this inherited form of hemophagocytic lymphophistio-

cytosis, the lytic granules of CTL cannot fuse with the

PM and therefore fail to release their lytic molecules and

kill target cells. In platelets isolated from a FHL4 patient

devoid of functional syntaxin-11, agonist-induced exocy-

tosis of dense granules and a-granules is severely inhib-

ited, while that of lysosomes is mildly affected. The

recently established mouse STX-11 knock-out strains

greatly enhance the availability of syntaxin-11-deficient

platelets and will probably allow for establishing its pre-

cise role in platelet exocytosis [66].

The characterization of knock-out animals clearly

established a requirement for VAMP-8 and syntaxin-11 in

secretory events in a variety of cells, including platelets.

Even though VAMP-8 and syntaxin-11 are the most

abundant platelet SNAREs and do co-immunoprecipitate,

we do not know whether they act together in fusion of

granules with the PM. This issue is important because

VAMP-8 serves as a regulator of fusion between late

endocytic organelles [67], as well fusion of autophago-

somes with endosomes and lysosomes [68]. As these are

typical fusion reactions between intracellular organelles,

the question then is what precise fusion event in platelets

is critically dependent on VAMP-8. A likely locale for

VAMP-8 action would be the PM or OCS, where it could

drive fusion with granules. It is also possible that during

platelet formation VAMP-8 regulates a fusion event in

the maturation of the granules. This could represent a

necessary step that delivers (exocytic) machinery to the

granule membrane for subsequent fusion at the cell sur-

face, a mechanism that is similar to lytic granule matura-

tion in CTL [69]. Like VAMP-8, syntaxin-11 is also on

endo-lysosomal membranes. Consistent with that localiza-

tion, it regulates fusion between endo-lysosomal orga-

nelles in macrophages, together with the v-SNARE Vti1b

[70]. As Vti1b is expressed in platelets as well, further

experiments are needed to pinpoint the fusion event that

syntaxin-11 regulates in platelet release.

Regulation of SNARE complexes

FHL3 and FHL5 are two other forms of FHL and are

caused by mutation in UNC13-D and STX-BP2 [71]. Pla-

telets of FHL3 patients exhibit strongly impaired capacity

for exocytosis of all the granule content [72], a phenotype

that is recapitulated in the Jinx mouse, a functional

munc13-4 null [73]. In FHL5 platelets, dense granule and

a-granule release is severely inhibited in the absence of

STX-BP2 (munc18-2), while lysosome secretion is moder-

ately jeopardized. Munc18-2 is a member of the family of

sec1/munc18-like proteins that includes amongst others

munc18, vps33 and vps45. They are essential to mem-

brane transport and cell physiology. Genetic deficiencies

in munc18-1, munc18-2, vps33b and vps45 all cause seri-

ous human disease, including infantile epileptic

encephalopathy, FHL5, ARC syndrome, bleeding disor-

ders and neutropenia. Sec1/munc18 proteins have an

arch-shaped structure that clasps trans-SNARE com-

plexes and directs their fusion activity in a spatial and

temporal manner [71]. The interaction with sec1/munc18

proteins also contributes in an important manner to the

stability of syntaxins. For instance, point mutations of

munc18-2 in FHL5 patients are accompanied by impaired

expression of syntaxin-11 [74], while a knock-out of

munc18-1 in mouse brain strongly reduces syntaxin-1

levels [75]. Munc13-4 is an effector of rab27b, a small

GTPase that is highly expressed in platelets [21]. Platelets

of a rab27b knock-out mouse are impaired in dense gran-

ule secretion. As these platelets also contain fewer dense

granules, the secretory phenotype seen in the absence of

rab27b could be more complex and perhaps reflect a role

in the biogenesis of dense granules [24]. In addition, pla-

telets express slp1 and slp4, two rab27 effectors of the

synaptotagmin-like protein family, which regulate dense

granule release via rap1GAP2 and rab8, respectively

[76,77].

In mast cells, rab27 and munc13-4 localize on LRO

and the interaction between rab27 and munc13-4 is

required for tethering LRO to the cell surface prior to

fusion [78]. Munc13-4 contains an N-terminal and a

C-terminal C2 domain connected by a long a-helical
MUN domain. The MUN domain is conserved in all

munc13 proteins and is involved in vesicle priming. The

MUN domain is structurally homologous to the charac-

teristic two-stacked helical bundle found in sec6 and

sec15 subunits of the exocyst tethering complex. The N

terminal C2 domain binds in a Ca 2+-dependent manner

to PI(4,5)P2 [79]. This propensity allows Munc13-4 to

interact with PI(4,5)P2-enriched regions on the PM,

thereby facilitating tethering of secretory LRO to the

PM. An important conceptual advance regarding the role

of munc13 and munc18 came from recent studies on neu-

ronal SNAREs in synaptic vesicle fusion, where Rizo

showed a dependency of fusion on munc18 and munc13

[80]. Although this was accomplished with a specific

SNARE complex, its significance will probably transpire

beyond the case and provide a general explanation for

the role of munc13 and munc18 proteins in membrane

fusion. The closed form of syntaxin is clamped in a tight
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complex with munc18 and not available for other

SNAREs. Munc13 can extract syntaxin through an inter-

action of the MUN domain with syntaxin and possibly

munc18, thereby catalyzing the formation of the full syn-

taxin-SNAP-25-VAMP-1 complex and fusion [80].

In electron microscopy studies, platelet and granule

morphology in mutant cells appears very similar if not

identical to that in wild-type cells. Equally unaffected are

the signaling pathways that ultimately drive the exocytic

release process. At the ultrastructural level, the mutant

cells occasionally appear to contain more granules, whose

precise origin and composition usually have not been rig-

orously established. Nevertheless, this phenotype is sug-

gestive for the accumulation of the granules due to

impaired fusion with the PM, an observation that has

been made before in CTLs of FHL3 and Griscelli syn-

drome type 2 patients.

In interactor screens for proteins that co-regulate secre-

tion with syntaxin in platelets or endothelial cells, the

Whiteheart [81] and Lowenstein [82] laboratories discov-

ered tomosyn-1. Tomosyn-1 (STX-BP5) is the founding

member of a small family of syntaxin binding proteins

[83]. Initially identified as a partner of neuronal syntaxin-

1, it is now clear that tomosyn-1 is expressed beyond the

brain and interacts with several syntaxins. Interestingly,

single nucleotide polymorphisms in STX-BP5 constitute a

risk factor for venous [84] and arterial [85] thrombosis,

and have implicated tomosyn-1 as a regulator of VWF

plasma levels. Direct evidence for this notion was

obtained in platelets from STX-BP5 knock-out mice,

which revealed a dependence of a-granule, dense granule

and lysosome secretion on tomosyn-1 function [81].

Tomosyn-1 also has a non-essential role in the biogenesis

of granules or sorting of cargo in granules, because sev-

eral soluble content markers are present at altered levels

in the granules of knock-out animals [81]. Intriguingly,

endothelial cells of STX-BP5 knock-out animals are more

efficient in stimulated secretion of histamine and VWF

[82]. Consistent with the knock-out phenotype in these

cells, ectopic expression of wild-type tomosyn-1 reduced

VWF release. How tomosyn-1 can have opposing func-

tions in platelets and endothelial cells remains to be

established. Tomosyn-1 contains a C-terminal VAMP-like

motif that could compete with a cognate v-SNARE and

thereby block fusogenic trans SNARE complex forma-

tion, as seen after overexpression in neurons [86]. Expres-

sion of a tomosyn-1 deletion construct missing the

v-SNARE domain, however, also inhibits secretion, sug-

gesting that transactions with other proteins are relevant

as well [83]. Tomosyn-1 and its homologs have been

described as positive regulators of secretion in yeast [87]

and endocrine cell lines [88]. In contrast, at the neuro-

muscular junction, tomosyn-1 is thought to be needed for

the spatial organization of vesicle fusion, perhaps via

mechanisms involving accessory proteins for tethering

and docking [89]. A candidate could be the rab27 effector

synaptagmin-like protein 4 (slp4) that was co-isolated

with tomosyn-1 from platelets [81]. In epithelial cells slp4

acts as a tethering factor for transport vesicles at the api-

cal PM, together with syntaxin-3, which in this cell type

is the major munc18-2 partner [90].

Post-translational modifications in platelet exocytosis

Although SNARE proteins and accessory proteins are the

main characters in membrane transport and fusion, their

activity needs to be tightly controlled. A central question

is how signals generated after receptor ligation plug into

the membrane traffic machinery, as the pathways for

these cells extensively employ post-translational modifica-

tions. Most of the published work concerns the effect of

SNARE phosphorylation in a variety of cells and experi-

mental systems [91].

Phosphorylation of SNARE proteins

Cross-linking of the high-affinity FceRI receptor in mast

cells is the trigger for LRO exocytosis and involves phos-

phorylation of SNAP-23 by IjB kinase 2, through a PKC

pathway that is conserved in lymphocytes [92]. Phospho-

rylation of SNAP-23 is essential in degranulation as ecto-

pic expression of the phospho-mimetic SNAP-23 mutant

partially rescued impaired IgE-mediated degranulation in

IjB kinase2-deficient mast cells [92]. In platelets, the ago-

nist-induced activation with physiological stimuli such as

collagen or thrombin also results in Ser95 phosphoryla-

tion of SNAP-23 via a PKC-IjB kinase 2 pathway [93].

Platelets from IjB kinase 2 �/� mice fail to phosphory-

late SNAP-23 after thrombin stimulation and release

from each of the platelet granules is inhibited. The impor-

tance of SNAP-23 phosphorylation in platelet secretion

correlates with its propensity to increase SNARE complex

formation with syntaxin-11 and VAMP-8, the two major

SNARES in platelets that are essential in exocytosis [93].

Several syntaxins are modified by phosphorylation,

including syntaxin-1, syntaxin-3B, syntaxin-17, and in

platelets syntaxin-4 [91,94]. Activation of platelets by a

physiological stimulus such as thrombin causes PKC-

dependent phosphorylation of syntaxin-4. A general phys-

iological role of phosphorylation in syntaxin function (if

possible at all) has not yet emerged. For syntaxin-1 and

syntaxin-4 it is clear that the phospho-forms have reduced

binding to SNAP-25 and SNAP-23, respectively, and

thereby might affect cognate fusogenic SNARE com-

plexes and secretion.

Phosphorylation of SNARE regulators

Because munc18 proteins serve to direct the fusogenic

action of trans-SNARE complexes, they are good candi-

dates for regulation in response to intra- or extracellular

signals. Munc18-1 is phosphorylated by PKC in neurons
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and neuro-endocrine cells, where phosphorylation impairs

association with syntaxin and correlates with increased

exocytosis. Molecular dynamics simulations suggest that

reduced affinity of phosphorylated munc18 drives a con-

formation, which makes syntaxin binding energetically

and sterically unfavorable [95]. Thrombin-mediated plate-

let activation increases phosphorylation of a munc18, the

identity of which remains to be established. Munc18-2 is

ubiquitously expressed and essential for exocytosis in plate-

lets. Though not yet formally shown in platelets, munc18-2

is phosphorylated during stimulatory conditions for

regulated secretion in epithelial cells. As with munc18-1,

phosphorylation decreases the interaction of munc18-2

with syntaxin-3 and enhances formation of a functional

munc18-2-syntaxin 3 – SNAP-25-VAMP-2 fusion com-

plex [96]. As syntaxin-3 can substitute for syntaxin-11, we

may speculate that phosphorylation of munc18-2 in plate-

lets regulates the munc18-2 – syntaxin-11 – SNAP-23

complex.

Platelet microparticles (PMPs) and exosomes

Platelet adhesion and activation are accompanied by the

release of membrane-bound vesicles. The small-sized pop-

ulation (40–100 nm) of these membranes, termed exo-

somes, is secreted from the multivesicular alpha granule

population [97], while the larger PMPs (100 nm–1 lm)

are derived directly from the PM by mechanisms that

require shearing forces generated by the flowing blood

and calcium-dependent uncoupling of the membrane

skeleton from the lipid bilayer [63,64]. PMPs and exo-

somes are implicated in cell to cell communication, and

are an important vehicle for interaction with leukocytes

[64]. PMPs have been observed in several diseases with an

inflammatory component [98]. Platelet activation induces

the synthesis and release of IL-1b [8]. IL-1b is synthesized

on poly-ribosomes in the cytoplasm and can exit the cell

via shedding of membrane-bound vesicles or release of

exosomes. Indeed, IL-1b associated with PMPs supports

leukocyte recruitment and the progression of arthritis

[99].

Perspective

Overall, the pleiomorphic nature of and heterogeneity in

cargo distribution of the a-granule population provide a

challenge for further study. It is evident that there is a

need for precise characterization of the platelet secretory

pathway in order to define the criteria that control

degranulation and secretion of selective mediators that

promote or counteract adhesive and inflammatory

responses. Platelets are non-polar circulating cells but

regain polarity as soon as they adhere to the sub-endothe-

lium and each other. Changes in membrane microdo-

mains may generate specialized areas where secretion

becomes highly polarized. How non-polar platelets con-

trol selective secretory domains under flowing conditions

remains an important issue for further study. Critical for

progress in this area is a full appreciation of the extent to

which shear forces control membrane fission and fusion

processes, which SNARE subsets are involved, and how

the activity of SNARE regulation is coordinated. Also

the role of shear forces in actin dynamics, particularly in

the regulation of late stages of secretion, is an important

area for further exploration, as well as the recently attrib-

uted role of platelet-derived vesicles and their heteroge-

neous content.
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