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Abstract

The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function
and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly
understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component
of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is
necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level,
GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to
Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1
connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane
domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality
in neuronal membrane receptor trafficking.
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Introduction

In order to receive, process, and transmit information, neurons

need substantially regulated mechanisms to locally redistribute

membranes and proteins to synaptic sites. Multiple lines of

evidence suggest that the endosomal pathway plays a crucial role

in synaptic function and plasticity. At excitatory synapses, the

postsynaptic membrane composition is subject to continuous and

activity-dependent endocytic cycling of postsynaptic molecules.

Based on uptake of extracellular gold particles, visualization of

clathrin assembly in living neurons and pre-embedding immuno-

gold electron microscopy, it was shown that endosomal compart-

ments are present in the dendritic shaft and spines and that

endocytosis occurs at specialized endocytic zones lateral to the

postsynaptic density (PSD) [1]. Using live-cell imaging and serial

section electron microscopy, it was demonstrated that recycling

endosomes are required for the growth and maintenance of

dendritic spines [2]. Membrane recruitment from recycling

endosomes is a common mechanism that cells employ to expand

the plasma membrane and targets proteins in a polarized manner

in such distinct processes as cytokinesis, cell-cell adhesion,

phagocytosis, and cell fate determination [3,4].
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Perhaps the strongest evidence for the importance of endocytic

recycling in synaptic function originates from the analysis of alpha-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type

glutamate receptor (AMPAR) trafficking [5–8]. AMPARs are the

major excitatory neurotransmitter receptors in the brain, and redis-

tribution of AMPARs in and out of the synapse has emerged as an

important mechanism for information storage in the brain [6,8].

Increased delivery of AMPARs to the postsynaptic membrane leads

to long-term potentiation (LTP), whereas net removal of AMPARs

by internalization from the surface through endocytosis seems

to underlie long-term depression (LTD) [5–8]. Like any other

internalized membrane protein, endocytosed AMPARs undergo

endosomal sorting; they can be degraded in lysosomes or recycled

back to the surface membrane [9–11]. A popular model holds that

the recycling endosomes provides the local intracellular pool of

glutamate receptors for LTP [12]. Neuron-enriched endosomal

protein of 21 kD (Neep21) and its interacting protein syntaxin 13

are endosomal proteins implicated in regulating AMPAR trafficking

during synaptic plasticity [13]. However, it remains unclear how

endocytic receptor sorting and recycling is organized and coor-

dinated in neuronal dendrites.

Multiple proteins identified as regulators of endosomal traffic in

non-neuronal cells are also important in neuronal endosomes

[3,14–16]. Dendritic spines contain the basic components of the

endocytic machinery, postsynaptic receptor endocytosis occurs

through a dynamin-dependent pathway, and Rab GTPases and

their effectors regulate endosomal traffic [17–19]. The classic

endosomal Rab proteins, Rab5, Rab4, and Rab11, have all been

implicated in endosomal receptor and membrane trafficking in

dendrites [12,19–23]. Rab5 controls transport to early endosomes

(also called sorting endosomes), whereas Rab4 and Rab11 are

involved in the regulation of endosomal recycling back to

the plasma membrane [24]. The endosomal pathway can be

considered as a mosaic of discrete but overlapping domains that

are generated and controlled by Rab proteins and their interacting

effector protein networks. The communication and transport

between sequentially organized Rab domains is thought to be

mediated via proteins that are ‘‘shared’’ by both domains. Bivalent

effectors, such as Rabenosyn-5 and Rabaptin-5, have been found

that connect proximal Rab5 and distal Rab4 domains on early

endosomes [25,26]. However, how Rab4 and Rab11 recycling

endosomal domains are coupled is poorly understood.

To gain a better mechanistic understanding of endosome

recycling in neurons, we searched for neuronal interacting

partners of Rab4 [27]. Using a pull-down and mass spectrometry

approach, we identified GRASP-1 as a neuron-specific effector of

Rab4 and key component of endocytic recycling in dendrites.

GRASP-1 was originally found to interact with glutamate receptor

interacting protein (GRIP) and shown to be involved in regulating

AMPAR distribution [28]. We show that GRASP-1 is necessary

for AMPAR recycling and synaptic plasticity, essential for

maintenance of spine morphology and important for endosomal

trafficking. GRASP-1 segregates Rab4 from EEA1/Neep21/

Rab5-positive early endosomal membranes and coordinates the

coupling to Rab11-labelled recycling endosomes via the interac-

tion with t-SNARE syntaxin 13. These results describe a molecular

mechanism for regulating recycling endocytosis by GRASP-1.

Results

GRASP-1 Is a Rab4-GTP-Binding Protein
To identify Rab4-interacting proteins, we performed glutathi-

one S-transferase (GST) pull-down assays with pig brain extracts

using GTPcS-loaded GST-Rab4 affinity columns and analyzed

the isolated proteins by mass spectrometry (Figure 1A). Among the

proteins that were highly enriched in the GST-Rab4-GTPcS pull-

downs but were not detected by mass spectrometry in the pull-

down assays using GST-Rab4-GDP or GST alone, we found

known binding partners of Rab4, such as the bivalent Rab

effectors Rabaptin-5 and Rabenosyn-5 (Table 1) [25,29]. The

most significant novel hit was GRASP-1, which was originally

identified as a GRIP/AMPAR interacting protein. GRASP-1 has

been shown to regulate AMPAR targeting and Jun-N-terminal

kinase (JNK) signaling [28,30]. The association between GRASP-1

and Rab4 was confirmed by immunoblotting with an antibody

against GRASP-1 (Figure 1B). Binding of GRASP-1 to Rab4 was

direct and specific since GRASP-1 associates with GST-Rab4 but

not with the other tested Rab proteins, such as Rab3, Rab5, and

Rab11 (Figure 1C). Some weaker binding was detected with Rab7

in this assay. Immunoprecipitation experiments from COS-7 cells

co-expressing myc-GRASP-1 and Flag-Rab4 or Flag-Rab5 further

confirmed the interaction of GRASP-1 with Rab4 (Figure 1D).

Fluorescence microscopic analysis of Hela cells transfected with

myc-GRASP-1 and GFP-Rab4 showed that the distribution of

GRASP-1 fully coincided with GFP-Rab4 (Figure 1E). Analysis of

the endosomal compartment in the same cells, as visualized by

internalized Alexa594-Transferrin (Tf-594), indicated that

GRASP-1 localizes to the Rab4-positive domain of the early

endosomal recycling system. These immunofluorescence data are

in line with the reported endosomal localization of GRASP-1 in

Hep-2 cells, detected with an autoimmune GRASP-1 serum from

a patient with recurrent infections and a presumed immune

deficiency [31].

GRASP-1 has an extensive propensity to form coiled-coils and

contains a caspase-3 cleavage site, a PDZ-like GRIP binding

domain, and a central glutamate-rich stretch (Figure 1F). To define

the minimal Rab4 binding domain on GRASP-1, we generated

a series of myc-GRASP-1 truncations (Figure 1F). GST-Rab4

Author Summary

Neurons communicate with each other through special-
ized structures called synapses, and proper synapse
function is fundamental for information processing and
memory storage. The endosomal membrane trafficking
pathway is crucial for the structure and function of
synapses; however, the components of the neuronal
endosomal transport machinery are poorly characterized.
In this paper, we report that a protein called GRASP-1 is
required for neurotransmitter receptor recycling through
endosomes and back to the cell surface, as well as for the
normal morphology of dendritic spines—the projections
that form synapses—and for synaptic plasticity. We show
that GRASP-1 coordinates coupling between early and
later steps of the endocytic recycling pathway by binding
to Rab4, a regulator of early endosomes, and to another
endosomal protein found later in the pathway called
syntaxin 13—a so-called SNARE protein involved in
membrane fusion. GRASP-1 binds Rab4 with its N terminus
and syntaxin 13 with its C terminus, suggesting that these
interactions could structurally and functionally link early
endosomes to those later in the recycling pathway. We
propose a model in which GRASP-1 forms a molecular
bridge between different endosomal membranes and the
SNARE fusion machinery. Our study thus provides new
mechanistic information about endosome function in
neurons and highlights GRASP-1 as a key molecule that
controls membrane receptor sorting and recycling during
synaptic plasticity.

GRASP-1 Regulates Endosome Recycling
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Figure 1. GRASP-1 is a Rab4GTP-binding protein. (A) Silver stained gel showing isolation of GSTRab4-GTPcS binding proteins from brain
cytosol. Asterisk denotes band from which GRASP-1 was identified. (B) Western blot of samples from (A) probed with GRASP-1 antibody. (C) Binding
assay of 35S-labeled GRASP and GSTRab4-GTPcS, or GSTRab4-GDP, and other GTPcS charged GST-Rab proteins. (D) FLAG-tagged Rabs were co-
expressed with myc-GRASP-1 in COS-7 cells. Anti-FLAG immunoprecipitates (IP) were analyzed by Western blot with myc antibody. (E) Hela cells were
transfected with GFP-Rab4, myc-GRASP-1, or both. Prior to fixation, cells were incubated for 60 min with Alexa594-labeled Tf at 37uC. Bar is 10 mm. (F)
Coiled-coil prediction and domain architecture of GRASP-1. Glu, glutamic acid rich domain; asterisk, caspase-3 cleavage site; GRIPBD, GRIP1 binding
domain. (G) Binding domain analysis using lysates of COS-7 cells expressing myc-tagged GRASP-1 truncations and GTPcS-charged GST-Rab4.
doi:10.1371/journal.pbio.1000283.g001
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pull-down assays with COS-7 cell extracts expressing GRASP-1

mutants showed that the N-terminal domain of GRASP-1 binds to

Rab4 and that the coiled-coil region between amino acid 280–300 is

required for this interaction (Figure 1G). However, full-length

GRASP-1 lacking amino acid 280–300 partially retained Rab4

binding (unpublished data). These data argue for an important role

of the N-terminal coiled-coil region in Rab4 binding but show that

other regions might also be involved.

It has been reported that GRASP-1 may serve as a guanine

nucleotide exchange factor (GEF) for H-ras [28]. We tested

whether GRASP-1 might be a GEF for Rab4 by analyzing

recombinant GRASP-1(1–594) in a GEF assay using fluorescent

mantGDP. GRASP-1 did not act as GEF for Rab4 (Figure 2A,B).

However, unlike the positive control cdc25, GRASP-1 also did not

exhibit noticeable GEF activity towards H-ras (Figure 2A). Full-

length GRASP-1 also failed to increase GTP-loading of H-Ras in

vivo as measured in pull-down assays with the recombinant ras

binding domain of Raf-1. The bona fide GEF Ras-GRP markedly

increased the amount of H-Ras in the GTP state (Figure 2C),

which was further enhanced through its membrane recruitment

via a phorbol myristate acetate (PMA)-controlled pathway [32]. In

line with these results, careful sequence analysis of GRASP-1 did

not reveal significant homology to any known rasGEF. Together

these data suggest that GRASP-1 is not a rasGEF but a Rab4

effector.

GRASP-1 Localizes to a Sub-Domain of Rab4-Positive
Early Recycling Endosomes in Neurons

We examined GRASP-1 expression in mouse tissues and cell

lines and showed by Western blot that GRASP-1 is highly

expressed throughout the central nervous system, including cortex,

cerebellum, midbrain, and spinal cord, and in primary cultured

Table 1. Binding partners of GST-Rab4-GTP in pig brain
extracts identified by mass spectrometry.

Identified
Protein

MW
(kDa)

Pept.
Total

NCBI GI
Number References

Rabaptin-5 99.7 68 1050523 [29]

GRASP-1 96.3 9 16758652 [28]

Rabenosyn-5 89.5 3 58037445 [25]

The table shows proteins identified with a significant Mascot score in GST-Rab4-
GTP pull-downs from pig brain extracts. The list is corrected for background
proteins, which were identified in a control GST-Rab4-GDP and GST pull-down.
For each identified protein, the list is filtered for duplicates and shows only the
hits with identified peptides.
doi:10.1371/journal.pbio.1000283.t001

Figure 2. GRASP-1 does not have GEF activity on H-ras and Rab4. (A–B) 0.2 mM H-ras or Rab4 loaded with fluorescent mantGDP was
incubated with an excess of GDP at 25uC, in the absence or in the presence of 10 mM GRASP-1(1–594), 0.2 mM cdc-25, or 10 mM EDTA. Dissociation of
mGDP was monitored by measuring the decrease in relative fluorescence that accompanies release of mGDP from the GTPase. (C) COS-7 cells were
transfected with HA-Hras in combination with indicated constructs and treated with or without PMA. Ras-GTP was isolated on GSH beads containing
the ras binding domain of the ras effector raf and analyzed by Western blot with HA antibody. Note that full-length GRASP-1 did not increase rasGTP
level above non-transfected control. Asterisk and arrowhead in HA Western blot of input material denote a background band and the position of HA-
ras, respectively.
doi:10.1371/journal.pbio.1000283.g002
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hippocampal neurons but is absent in non-neuronal tissues and

cell types with the exception of neuroendocrine insulinoma cells

(Figure 3A). These results are consistent with previous immunoblot

and immunohistochemistry analyses [28], indicating that GRASP-

1 is expressed in neurons throughout the CNS, with highest

expression levels in the hippocampus. Double labeling confocal

immunofluorescence on mouse brain and spinal cord sections

showed that GRASP-1 immunoreactivity was associated with

punctate structures throughout the somato-dendritic compartment

of neurons (Figure S1 and unpublished data). These punctate

structures generally were immunoreactive for Rab4, although

various GRASP-1 positive structures did not label for Rab4 and

vise versa (Figure S1).

Immunofluorescence labeling in mature hippocampal neurons

(.days in vitro 17; DIV 17) revealed that endogenous GRASP-1,

although present in axons, is predominantly localized within the

somatodendritic compartment, as evidenced by its labeling pattern

and the codistribution with the dendritic marker MAP2

(Figure 3B). GRASP-1 is associated with punctate structures that

occasionally extend beyond the dendritic shaft (arrowheads in

Figure 3C), overlap with the synaptic markers PSD-95 (arrow-

heads in Figure 3D) and Bassoon (arrowheads in Figure 3E), and

localize within the dendritic spines visualized in b-galactosidase (b-

gal) filled neurons (unpublished data). In line with the immuno-

histochemistry data (Figure S1) [28], colocalization of endogenous

Rab4 and GRASP-1 is observed in primary hippocampal neurons

(Figure 3F). Immunoelectron microscopy showed that endogenous

GRASP-1 and Rab4 localize on an extensive tubular network that

appeared to emanate from endosomes with a morphology that is

characteristic of recycling tubules (Figure 4A). The ability of

GRASP-1 to associate with Rab4 positive endosomes was further

confirmed by simultaneous dual color live imaging of mRFP-

GRASP-1 and GFP-Rab4: GRASP-1 was observed on mobile

Rab4-positive vesicles and tubular structures which dock and fuse

with larger GRASP-1/Rab4 endosomal domains (Figure 3H;

Videos S1 and S2). Overexpression of GFP-Rab4 in hippocampal

neurons increased the size of the endosomal structures where

GRASP-1 and Rab4 coincide (Figure 3G). Close inspection of

these structures revealed that endogenous GRASP-1 localizes to a

sub-domain of the large Rab4-positive endosome (Figure 3G,

inset), suggesting that GRASP-1 might regulate a particular step in

the endosomal recycling pathway. To test whether endosomal

GRASP-1 localization depends on Rab4 activity, neurons were

transfected with dominant negative Rab4 (Rab4S22N). Expression

of Rab4S22N redistributed GRASP-1 away from punctate

endosomes, while other endosomal proteins were unaffected

(Figure S2). Although it is likely that Rab4S22N inhibits

membrane localization of its effector GRASP-1, we cannot

exclude that overall levels of GRASP1 are also affected by

Rab4S22N. Together these data indicate that GRASP-1 is

selectively expressed in neurons, where it is partially localized to

Rab4-positive endosomes in dendrites and present in spines near

postsynaptic structures.

GRASP-1 Is Required for Dendritic Spine Morphology
To explore the function of GRASP-1, we used RNA

interference to knock down expression of GRASP-1 in mature

hippocampal neurons. We found two independent GRASP-1-

shRNA sequences (#2 and #5) that specifically inhibited

expression of GRASP-1 in hippocampal neurons (Figure S3).

GRASP-1 antibodies detected more than ,80% reduction of

GRASP-1 staining intensity in the cell body as well as in dendrites

in GRASP-1-shRNA transfected neurons (Figure S3B), while

other antibody staining, such as of MAP2, were unaffected

(unpublished data). Both GRASP-1-shRNAs constructs produced

similar phenotypic effects.

In view of previous observations that inhibition of endosomal

recycling by dominant negative forms of Rab4 and Rab11 alters

the morphology of dendritic spines [2], we first examined the effect

of GRASP-1 knock-down on dendritic spines. In neurons co-

expressing GRASP-1-shRNA and b-gal, we observed a marked

decrease in the total number of protrusions (Figure 5A). The

remaining dendritic protrusions were classified as filopodia-shaped

protrusions and mushroom-shaped spines based on the ratio of

spine head width to protrusion length. Quantification revealed

that knock-down of GRASP-1 decreased the number of

mushroom-headed spines (Figure 5B,C). Neurons expressing

GRASP-1* (which is resistant to GRASP-1-shRNA#2 knock-

down) largely reversed the spine phenotype (Figure 5A–C). A

similar spine phenotype was observed by expressing dominant

negative forms of Rab11 (Rab11S25N) and Rab4 (Rab4S22N)

(Figure 5B,C). We next tested whether GRASP-1 knock-down

could inhibit LTP-induced spine growth by glycine stimulation, a

protocol used to induce chemical LTP in cultured hippocampal

neurons [2]. In control neurons, glycine treatment induced new

spine formation and preexisting spine growth, while in the absence

of GRASP-1 spine growth is blocked (Figure 5D,E). Together

these data indicate that GRASP-1 plays an essential role within the

recycling endosomal pathway to maintain dendritic spine

morphology and regulate LTP-induced spine growth.

GRASP-1 Regulates Recycling Endosome Distribution
To directly examine the effect of GRASP-1 knock-down on

recycling endosomes distribution in spines, we analyzed its

localization with GFP-tagged transferrin receptor (GFP-TfR),

which is an archetype recycling cargo that at steady state resides in

recycling endosomes [2]. As expected GRASP-1 and GFP-TfR

showed a strong colocalisation within dendrites (Figure 5F). TfR-

GFP-labeled endosomes were present in the dendritic shaft at the

base of spines (a), in the spine neck (b), and in the spine head (c)

(Figure 5G). In neurons transfected with GRASP-1-shRNA, GFP-

TfR-labeled endosomes were abundantly present in the dendritic

shaft at the base of spines but were depleted from the spines

(Figure 5H). Quantitative analysis revealed that in control neurons

,50% of the spines had TfR-GFP-labeled endosomes in their

neck and head (b, c, and b+c), whereas in the absence of GRASP-1

only ,10% of the spines contained recycling endosomes

(Figure 5G). These data show that GRASP-1 regulates recycling

endosomal localization into dendritic spines and most likely

explains the observed GRASP-1 knock-down spine phenotype.

GRASP-1 Regulates AMPAR Recycling
To further explore the functional importance of GRASP-1 in

endosomal recycling, we studied the effect of GRASP-1 knock-

down on endocytic trafficking of AMPAR. First, we analyzed

GRASP-1 colocalization with internalized AMPARs by using the

fluorescence-based antibody feeding assay [10]. Live hippocampal

neurons expressing extracellular HA-tagged GluR1 or GluR2

subunits were surface labeled with HA antibody, stimulated with

AMPA (100 mM, in the presence of 50 mM APV, a selective n-

methyl-D-aspartic acid (NMDA) receptor antagonist), fixed,

permeabilized, and stained for internalized GluR subunits and

endogenous GRASP-1. At 2 min after AMPA stimulation, only

,5% of internalized HA-GluR1 or HA-GluR2 colocalized with

GRASP-1 (Figure S4A,B). After 10 min following stimulation,

colocalization between internalized GluR subunits with GRASP-1

was increased to ,30% (Figure 6A, Figure S4A,B), which is

GRASP-1 Regulates Endosome Recycling
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Figure 3. Colocalization of GRASP-1 and Rab4 in hippocampal neurons. (A) Expression pattern of Rab4 and GRASP-1 in mouse tissue and
cultured cells visualized on Western blot. (B–F) Representative images of hippocampal neurons double-labeled with antibodies against GRASP-1 and
endogenous markers. (B) MAP2 and GRASP-1, arrow denotes axon and arrowheads dendrites. (C) MAP2 and GRASP-1, arrow heads mark GRASP-1 signal
beyond the dendritic shaft. (D) PSD-95 and GRASP-1. (E) Bassoon and GRASP-1, arrowheads denote localization of GRASP-1 to synaptic sites. ,15% of
the synapses colocalize with GRASP-1, while the ‘‘random’’ colocalization is ,5% as determined by rotating the red channel image. (F) Rab4 and GRASP-
1 in the cell body (left) and dendrites (right). Arrowheads denote areas of colocalization, inset show magnified regions. Bar in B is 10 mm; Bar in (C–F) is
1 mm. (G) Image of the cell body of hippocampal neurons transfected at DIV13 with GFP-Rab4 and stained for GRASP-1. Magnified region is shown as
inset; note the partial localization of GRASP-1 on the distal domain of GFP-Rab4 endosomes. Bar is 1 mm. (H) Simultaneous imaging of GFP-Rab4 (green)
and mRFP-GRASP-1 (red) in transfected hippocampal neurons. Successive frames are shown and time (seconds) is indicated in the merge panel.
doi:10.1371/journal.pbio.1000283.g003
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consistent with the kinetics of internalized AMPAR colocalization

with Rab4 [9].

Next, we transfected hippocampal neurons either with GFP and

control vector or GFP with GRASP-1-shRNA and analyzed

internalization and recycling of endogenous AMPAR following

AMPA stimulation by immunolabeling for surface GluR1 and

GluR2. At steady state, GRASP-1 knock-down neurons showed

a modest but significant reduction (,15%) in surface labeling

for GluR1 (Figure 6B,D) and GluR2 (Figure 6C,E) compared

to controls. After 10 min of stimulation, GluR1 and GluR2

decreased at the neuronal surface in both control and GRASP-1

shRNA expressing neurons, reflecting receptor internalization

(Figure 6B,C). At 60 min, reappearance of both GluR1 and

GluR2 was strongly impaired (,50%) by GRASP-1 shRNA

compared to controls (Figure 6B–E). Consistently, in a protocol

where surface HA-GluR2 receptors were stripped away after

labeling [33], recycling of HA-GluR2 back to the surface was

significantly decreased in neurons expressing GRASP-1-shRNA

compared to control neurons (Figure 6F). No difference was

observed in the level of intracellular HA-GluR2 after 8 min

AMPA stimulation (Figure S4C,D). However, we observed that in

GRASP-1 knock-down neurons, more intracellular HA-GluR2 is

Figure 4. Endogenous GRASP-1, Rab4, and syntaxin 13 coincide on recycling endosomal tubules. Immunogold EM of hippocampal
neurons labeled with 10 nm protein A gold for Rab4 and with 15 nm protein A gold for GRASP-1 (A), with 10 nm protein A gold for syntaxin 13 and
with 15 nm protein A gold for GRASP-1 (B), with 10 nm protein A gold for syntaxin 13 and with 15 nm protein A gold for Rab4 (C), or with 15 nm
protein A gold for GRASP-1, with 5 nm protein gold for syntaxin 13, and with 10 nm protein A gold for rab4 (D). Arrow denotes tubular endosomal
membrane to which GRASP-1, syntaxin 13, and Rab4 localized. EE indicates early endosomes and scale bar is 100 nm.
doi:10.1371/journal.pbio.1000283.g004

GRASP-1 Regulates Endosome Recycling
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Figure 5. GRASP-1 is required for the maintenance of dendritic spines. (A) Representative high magnification images of dendrites of
hippocampal neurons co-transfected at DIV13 for 4 d with b-galactosidase (to mark the dendrites), and either pSuper, pSuper-GRASP-1-shRNA#2,
GRASP-1-shRNA#2 and GFP-GRASP-1*, Rab4S22N or Rab11S25N, and labeled with anti-b-galactosidase. (B) Quantification of number of protrusions
per 10 mm dendrites in hippocampal neurons transfected as indicated in (A). (C) Percentage of spines of hippocampal neurons transfected as
indicated in (A). (D) Neurons expressing GFP (to mark the dendrite), and either pSuper or pSuper-GRASP-1-shRNA#2 were stimulated with glycine
(200 mM, 3 min), and then imaged for .30 min after glycine stimulation. Arrows indicated spine formation. Closed and open arrowheads represent
spine growth and stable protrusions, respectively. (E) Quantification of protrusion formation (top) and spine growth (bottom) following glycine
stimulation. N, number of dendritic protrusions per 10 mm at the indicated time; N0, average number of dendritic protrusions per 10 mm before
application of glycine. Spine growth was probed as the change in sum of spine widths per 10 mm and comprises both addition of new spines and
growth of pre-existing spines. Glycine-stimulated spine growth is blocked by GRASP-1-shRNA#2 (bottom). (F) High magnification images of
dendrites of hippocampal neurons cotransfected at DIV13 for 4 d with myc-GRASP-1 (red) and GFP-TfR. (G,H) Percentage of spines containing TfR-
GFP positive endosomes at the indicated locations. Hippocampal neurons were co-transfected at DIV13 for 4 d with b-galactosidase (to mark
dendrites) and GFP-TfR (to mark endosomes) and pSuper control vector or pSuper-GRASP-1-shRNA#2 as shown in (H). Closed and open arrowheads
denote protrusions with and without GFP-TfR marked endosomes in the spine head, respectively. Error bars indicate S.E.M. ** p,0.005. *** p,0.0005.
Bar is 1 mm.
doi:10.1371/journal.pbio.1000283.g005
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present in LAMP-1 positive lysosomal compartments after AMPA

treatment (Figure S4E,F). These data show that GRASP-1 is

important for activity-induced AMPAR recycling.

GRASP-1 Regulates Synaptic Plasticity
Next we examined the role of GRASP-1 in excitatory

transmission and LTP and recorded excitatory synaptic responses

from CA1 pyramidal neurons in organotypic cultures of

hippocampal slices. Simultaneous recordings were obtained from

both transfected neurons (identified by cotransfected GFP) and a

neighboring untransfected neuron. Both control luciferase-shRNA

and GRASP-1-shRNA expressing cells had no effect on basal

AMPAR-mediated excitatory postsynaptic currents (EPSCs)

(GRASP-1 shRNA#5: 0.9360.09-fold relative to untransfected

cells, luciferase shRNA: 1.2160.18) and NMDAR-EPSCs

(GRASP-1 shRNA#5: 0.8660.09-fold, luciferase shRNA:

1.0360.32) (Figure 7A,B). The importance of GRASP-1-mediated

AMPAR recycling in slices became more evident by testing for

synaptic plasticity. After induction of LTP, cells expressing

GRASP-1 shRNA induced comparable levels of potentiation to

that of neighboring untransfected cells up to 20 min after the LTP

induction protocol. Subsequently, however, the response from

GRASP-1 shRNA transfected cells started to fall and eventually

returned to the baseline level at 30 min after LTP induction

(Figure 7C, untransfected neuron: 1.7560.18-fold enhancement of

EPSC at 29–30 min after LTP induction, transfected neuron:

1.1760.10). In contrast, control luciferase shRNA transfected, and

neighboring untransfected neurons expressed stable LTP lasting

for at least 30 min (Figure 7D, untransfected neuron: 2.0460.16-

fold enhancement of EPSC, transfected neuron: 2.4560.44).

These data indicate that GRASP-1 is important for synaptic

plasticity and particularly for the phase of LTP after the first

20 min. The results suggest that delivery of AMPAR from

recycling endosomes might be important for this later phase

of LTP.

GRASP-1 Segregates Rab4 from EEA1/Neep21 Endosomal
Membranes

To define more precisely the function of GRASP-1 within the

endosomal system, we first examined the localization of exogenous

GRASP-1 with respect to early endosomal marker proteins in

Hela cells. We found little if any co-distribution with GFP-Rab5

but extensive colocalization with GFP-Rab4 (Figure S5). The same

results were obtained in transfected hippocampal neurons, where

.80% of Rab4 structures contained GRASP-1 both in dendrites

and the cell body, while little overlap was seen with Rab5

(Figures 8A,B, S6). In agreement with this observation, the Rab5

domain marker EEA1 and endogenous GRASP-1 displayed

mutually exclusive distributions (Figure 8D), whereas ,40% of

EEA1 structures in the cell body and dendrites colocalized with

GFP-Rab4 (Figure 8C,E, top row). These results suggested that

Rab4 in neurons is interfaced between a proximal EEA1 and distal

GRASP-1 endosomal domain.

To determine whether the endosomal domain organization is

regulated by GRASP-1, we knocked down the expression of

GRASP-1 and then assayed the co-distribution of EEA1 and GFP-

Rab4. Hippocampal neurons transfected with GRASP-1-shRNA

showed a strong increase in colocalized EEA1 and GFP-Rab4

(,80%) compared to control neurons (,40%) (Figure 8C,E). In

contrast, in neurons transfected with myc-GRASP-1, the overlap

between EEA1 and GFP-Rab4 was significantly decreased

(,20%) (Figure 8C,E). Similar results were obtained in Hela

cells, where myc-GRASP-1 strongly reduced colocalization

between GFP-Rab4 and EEA1, while the co-distribution of

GFP-Rab5 and EEA1 was not affected (Figure S7). To confirm

our results we tested the effect of GRASP-1 on the localization of

other early endosomal markers, such as Neep21 [13]. Endogenous

Neep21 staining strongly coincides with Rab5 and EEA1 (,80%)

and to a lesser extent with Rab4 (,40%) (Figure S8 and

unpublished data). However in neurons transfected with myc-

GRASP-1 the overlap between Neep21 and GFP-Rab4 was

significantly reduced (,20%), consistent with the effect on EEA1

distribution (Figure S8D). In contrast, GRASP-1-shRNA enhances

Neep21/Rab4 colocalization (Figure S8D). Together these results

suggest that GRASP-1 is able to separate Rab4 from EEA1/

Neep21 endosomal domains.

GRASP-1 Regulates the Coupling between Rab4 and
Rab11 Domains

We next determined GRASP-1 localization with respect to late

and recycling endosomal markers in Hela cells (Figure S6) and

hippocampal neurons (Figure 9A). We found little GRASP-1

colocalization with the Rab7 endosomal domains, whereas

GRASP-1 labeling coincided extensively with Rab11-positive

compartments (,70%) (Figures 9A,C, S6). These data strongly

suggest that GRASP-1 is localized to distal aspects of the

endosomal recycling pathway and might serve to couple Rab4

and Rab11 domains. This observation was confirmed by

simultaneous dual color live imaging of mRFP-GRASP-1 and

GFP-Rab11: GRASP-1 and Rab11 colocalize on larger endoso-

mal domains, while dynamic Rab11-positive structures segregate

into distinct tubular or vesicular structures (Figure 9B; Videos S3

and S4). Most motile Rab11-positive tubules only transiently

overlap with GRASP-1-positive endosomes (Videos S3 and S4).

Rab4, Rab11, and GRASP-1 largely localized to overlapping

regions on these large endosomal structures in the neuronal cell

bodies and dendrites (Figure 9E). We further explored a possible

role for GRASP-1 in coupling Rab4 and Rab11 domains by

determining the Rab4/Rab11 co-distribution when GRASP-1 was

knocked down as well as after overexpression of myc-GRASP-1. In

Figure 6. Knock-down of GRASP-1 reduces AMPAR recycling. (A) Representative merge image of surface HA-GluR2 (blue) and internalized
HA-GluR2 (green) in soma and dendrites of hippocampal neurons labeled for GRASP-1 (red) after 10 min AMPA stimulation. Bar is 10 mm. (B,C)
Quantification of the surface fluorescence intensities of endogenous GluR1 (B) and GluR2 (C) in control pSuper vector or GRASP-1-shRNA#2
transfected neurons. The cells were untreated (0 min) or stimulated with AMPA for indicated times. Histograms show fluorescent intensity of surface
GluR subunit staining relative to the intensity of GFP transfected control neurons at basal levels. n = 20 cells for each group. (D,E) Representative
images of hippocampal neurons stained for endogenous surface GluR1 (D) and GluR2 (E). Hippocampal neurons at DIV13 were cotransfected with
GFP and pSuper control vector or GRASP-1-shRNA#2. At DIV17, neurons were fixed (0 min, no treatment) or stimulated for 2 min with 100 mM AMPA
in the presence of 50 mM APV and further incubated for a total of 10 or 60 min before fixation. Endogenous surface GluR1 (D) or GluR2 (E) was
revealed by immunofluorescence labeling without permeabilization using specific extracellular AMPAR antibodies. Bar is 20 mm. (F) Neurons
transfected with GFP, HA-GluR2, and either pSuper control vector or GRASP-1-shRNA#2 were stained live with an anti-HA antibody, stimulated for
2 min with AMPA/APV, acid stripped, and incubated in conditioned media for 45 min. Recycled HA-GluR2 (blue) and internalized HA-GluR2 (red) were
sequentially labeled. Bar is 1 mm. (G) Quantification of the ratio of recycled to internalized HA-GluR2 and normalized to unstimulated wild-type
control neurons (HA-GluR2 recycling index) as indicated in (F). Error bars indicate S.E.M. * p,0.05. ** p,0.005. *** p,0.0005.
doi:10.1371/journal.pbio.1000283.g006
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Figure 7. Effect of GRASP-1 knock-down on synaptic transmission and plasticity in hippocampal slice. (A,B) AMPA and NMDA receptor-
mediated excitatory synaptic responses were measured from neurons transfected with Luciferase-shRNA (A, control) and GRASP-1-shRNA#5 (B). Top,
sample traces mediated by AMPAR (downward) and NMDAR (upward) from pairs of shRNA transfected (Luciferase or GRASP-1-shRNA#5) and
neighboring untransfected (Untrans) neurons. Stimulus artifacts were truncated from the traces. Bottom, summary graphs of EPSC amplitudes
(AMPA-R-EPSCs and NMDA-R-EPSCs) from shRNA transfected and neighboring untransfected cells. Number of cell pairs: Luciferase-shRNA, 18 and 10;
GRASP-1-shRNA#5, 15 and 8 for AMPA and NMDAR-EPSC. NS, not significant. Error bars indicate S.E.M. (C,D) LTP was induced in shRNAs expressing
and neighboring untransfected cells by pairing depolarization to 0 mV with 2 Hz stimulation for 100s. Left, sample AMPAR-EPSC traces from
untransfected and Luciferase or GRASP-1 shRNA transfected neurons. Currents before (black) and after (gray) are superimposed. Right, time course of
AMPA-EPSCs after LTP induction (LTP was induced at t = 0). The time points at which sample traces were obtained are indicated by 1 and 2. Number
of cell pairs: Luciferase-shRNA, 6; GRASP-1-shRNA#5, 8. * p,0.05.
doi:10.1371/journal.pbio.1000283.g007
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absence of GRASP-1 we observed a significant decreased Rab4/

Rab11 colocalization (15%), compared to control neurons (30%

Rab4/Rab11 colocalization), while transfected myc-GRASP-1

robustly enhanced the coalescence of Rab4 and Rab11 domains

(80% Rab4/Rab11 colocalization) (Figure 9D,F). Importantly, the

observed decrease in EEA1/Rab4 and Neep21/Rab4 domain

coupling after myc-GRASP-1 transfection (Figure 8C,E) is

consistent with an increase in Rab4/Rab11 domain coupling,

while the reverse occurred after GRASP-1 knock-down. These

data therefore show that GRASP-1 is a positive regulator of

endosomal recycling membrane maturation, via coupling of

Rab4- and Rab11-positive endosomal domains.

Syntaxin 13 Binds to GRASP-1 and Connects Recycling
Endosomal Domains

GRASP-1 colocalized with endogenous Rab11 (Figure S6) and

GFP-Rab11 (Figure 9A) in neurons but did not directly bind to

Rab11 (Figure 1C). These observations suggest a crosstalk between

Figure 8. GRASP-1 segregates Rab4 from EEA1 positive endosomal membranes. (A) Representative images of dendrites of hippocampal
neurons cotransfected at DIV13 for 4 d with myc-GRASP-1 (red) and either GFP-Rab4 (upper row) or GFP-Rab5 (bottom row). (B) Percentage of
colocalization between myc-GRASP-1 and Rab proteins in neurons as indicated in (A). (C) Percentage of Rab4 and EEA1 colocalization in cell body and
dendrites as indicated in (E). Error bars indicate S.E.M. *** p,0.0005. (D) Representative images of dendrites of hippocampal neurons double-labeled
with anti-GRASP-1 (red) and anti-EEA1 (green) antibodies. (E) Representative images of dendrites of hippocampal neurons cotransfected at DIV13 for
4 d with GFP-Rab4 and pSuper control vector, myc-GRASP-1, or pSuper-GRASP-1-shRNA#2 and labeled with anti-EEA1 (red) and anti-myc (blue)
antibodies. Bar is 1 mm.
doi:10.1371/journal.pbio.1000283.g008
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Figure 9. GRASP-1 couples Rab4 and Rab11 domains. (A) Representative images of dendrites of hippocampal neurons cotransfected at DIV13
for 4 d with myc-GRASP-1 and either GFP-tagged Rab7 or Rab11 and labeled with anti-myc (red). Bar is 1 mm. (B) Simultaneous imaging of GFP-Rab11
(green) and mRFP-GRASP-1 (red) in transfected hippocampal neurons. Successive frames are shown and time (seconds) is indicated in the merge
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GRASP-1 and other proteins on Rab11 endosomal domains in

hippocampal neurons. One of these candidate proteins is the

SNARE syntaxin 13, a transmembrane domain protein that

localizes to Rab11 positive tubular recycling endosomes [34,35]

and is important for AMPAR recycling, spine morphology, and

endosomal mobility [2,12]. We investigated the possible interaction

between GRASP-1 and syntaxin 13 by co-immunoprecipitation

experiments from COS-7 cells transfected with GFP-GRASP-1

and different myc-syntaxin constructs. GFP-GRASP-1 precipi-

tated syntaxin 13 and not myc-syntaxin 1 and myc-syntaxin 2

(Figure 10A). Consistent, GRASP-1 colocalized with syntaxin 13

(Figures 11A,B and S9) and not with syntaxin 1 (Figure S9A and

unpublished data). Moreover, overexpression of GRASP-1 strongly

accumulates syntaxin 13 in GRASP-1/Rab4/Rab11 positive

structures in neurons (Figure 11A) and Hela cells (Figure S9B).

Immunogold EM of neurons showed that syntaxin 13 colocalized

with GRASP-1 (Figure 4B) and with Rab4 (Figure 4C) on

endosomal tubulovesicular recycling structures, reminiscent of the

Rab4-GRASP-1 organelles (Figure 4A). Triple label immuno EM of

endogenous Rab4, GRASP-1, and syntaxin 13 indeed revealed

partial co-distribution to the endosomal tubulovesicular recycling

structures (Figure 4D). This suggests that the three proteins might be

Figure 10. Syntaxin 13 interacts with the C-terminal domain of GRASP-1. (A) Lysates of COS-7 cells cotransfected with GFP-GRASP-1 and
myc-syntaxins were immunoprecipitated with anti-GFP antibody and analyzed by Western blot. (B) Lysates of COS-7 cells cotransfected with GFP-
syntaxin 13 and full-length myc-GRASP-1 (1–837) or truncated myc-GRASP-1 constructs (1–695 or 695–837) were immunoprecipitated with anti-GFP
antibody and analyzed by Western blot. Asterisk indicates background band. Arrows point to co-precipitated GRASP-1 proteins. (C) Binding assay
using lysates of COS-7 cells expressing myc-syntaxin 13 with or without GFP-GRASP-1 and GMP-PNP-charged GST-rab4. Note that myc-syntaxin 13 is
only isolated on the beads in the presence of GRASP-1. (D) Binding assay using lysate of COS-7 cells transfected with GFP-GRASP-1(594–837) and GST-
syntaxins without transmembrane domain (DTM). GRASP-1 was analyzed by Western blot with antibody against GFP. (E) Binding assay of 35S-labeled
GRASP-1 and immobilized GST-syntaxin 13DTM.
doi:10.1371/journal.pbio.1000283.g010

panel. (C) Percentage of colocalization between myc-GRASP-1 and Rab proteins in neurons as indicated in (A). Error bars indicate S.E.M. *** p,0.0005.
(D) Percentage of colocalization between Rab4 and Rab11 domains in neurons co-transfected with GFP-Rab4 and HA-Rab11 with either myc-GRASP-
1, pSuper-GRASP-1-shRNA#2, or pSuper-GRASP-1-shRNA#2 and GFP-GRASP-1* as indicated in (F). (E) Images of cell body of hippocampal neurons
triple transfected at DIV13 for 4 d with GFP-Rab4, HA-Rab11, and myc-GRASP-1 and labeled with anti-HA (red) or anti-myc (blue) antibodies. Bar is
10 mm. (F) Representative images of dendrites of hippocampal neurons cotransfected at DIV13 for 4 d with GFP-Rab4 and HA-Rab11 and pSuper
control vector, myc-GRASP-1, or pSuper-GRASP-1-shRNA#2 and labeled with anti-HA (red) or anti-myc (inset) antibodies. Bar is 1 mm.
doi:10.1371/journal.pbio.1000283.g009
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Figure 11. Syntaxin 13 coincides with GRASP-1 and segregates Rab4/Rab11 domains. (A) Representative image of hippocampal neuron
triple transfected at DIV13 for 4 d with GFP-Rab4, HA-GRASP-1, and myc-syntaxin 13 and labeled with anti-HA (blue) or anti-myc (red) antibodies.
Magnified region of the cell body is shown to indicate the strong colocalization of GRASP-1, Rab4, and syntaxin 13. (B) Representative images of
dendrites of hippocampal neurons transfected at DIV13 with GFP-GRASP-1 for 4 d and labeled with anti-syntaxin 13 (red). (C) Representative images
of dendrites of hippocampal neurons transfected at DIV13 with GFP-GRASP-1 for 4 d and labeled with anti-Neep21 (red). (D) Representative images
of dendrites of hippocampal neurons cotransfected at DIV13 for 4 d with myc-syntaxin 13 and control vector or HA-GRASP-1 and labeled with anti-
myc (green), anti-HA (blue), and anti-Neep21 (red). (E) Representative images of dendrites of hippocampal neurons cotransfected at DIV13 for 4 d
with GFP-Rab4, HA-Rab11, and control vector or myc-syntaxin 13DTM and labeled with anti-myc (blue) and anti-HA (red). (F) Percentage of
colocalization between HA-GRASP-1 and myc-syntaxin 1 or myc-syntaxin 13 in neurons. (G) Percentage of colocalization between myc-syntaxin 13
and Neep21 in dendrites as indicated in (D). (H) Percentage of colocalization between GFP-Rab4 and HA-Rab11 domains in dendrites expressing myc-
syntaxin 13DTM as indicated in (E). Error bars indicate S.E.M. ** p,0.005. *** p,0.0005. Bar in A is 10 mm; Bar in (B–E) is 1 mm.
doi:10.1371/journal.pbio.1000283.g011
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engaged in a complex on endosomal membranes. In agreement

with this hypothesis, myc-syntaxin 13 could be isolated from COS-7

lysates on GST-Rab4 beads, only if GRASP-1 was co-transfected

(Figure 10C). The interaction required the PDZ-like domain

containing C-terminal region of GRASP-1, but not the N-terminal

Rab4 binding domain (Figure 10B,D), and could be recapitulated

with purified GST-syntaxin 13 and 35S-labeled GRASP-1

(Figure 10E). Since syntaxin 13 has a transmembrane domain, it

could be an anchor for GRASP-1 on endosomal membranes. In

accord, the C-terminal part of GRASP-1 is necessary for the

localization of GRASP-1 to TfR containing endosomes (Figure

S10). However, GRASP-C alone is not sufficient for GRASP-1

membrane localization since the Rab4 binding domain is also

required (Figure S10).

Previously, syntaxin 13 was found in complexes with early

endosomal proteins EEA1 [36] and Neep21 [13]. To better

understand the role of syntaxin 13 in both early and recycling

endosomes, we first investigated the distribution of syntaxin 13 in

dendrites of hippocampal neurons and found ,40% overlap

between Neep21 and syntaxin 13 (Figure 11D,F), ,40%

colocalization between GRASP-1 and endogenous syntaxin 13

(Figure 11B), while no co-distribution of Neep21 with GRASP-1

was observed (Figure 11C, Figure S6). These data suggest that

GRASP-1/syntaxin 13 and Neep21/syntaxin 13 are associated

with distinct endosomal structures. Since expression of GFP-

GRASP-1 strongly accumulates endogenous syntaxin 13 in the cell

body and dendrites without recruiting Neep21 (Figure S6), we

examined whether GRASP-1 influences the Neep21/syntaxin 13

complex. Overexpression of GRASP-1 strongly reduced the

colocalization between syntaxin 13 and Neep21 (,15%) com-

pared to control neurons (,40%) (Figure 11D,G), suggesting that

GRASP-1 competes with Neep21 for binding to syntaxin 13,

thereby affecting the integrity of the Neep21/syntaxin 13 complex.

These data are consistent with the observation that GRASP-1

separates Rab4 from Neep21 endosomal domains.

To evaluate whether syntaxin 13 is important for GRASP-1

association with Rab11 domains, we triple transfected GFP-Rab4,

HA-Rab11, and a myc-tagged dominant negative syntaxin

13DTM mutant lacking the transmembrane domain. Hippocam-

pal neurons transfected with syntaxin 13DTM showed a strong

decrease in Rab4/Rab11 colocalization (,10%) compared to

control neurons (,30%) (Figure 11E,H), while the co-distribution

of Rab4 and GRASP-1 was not affected (unpublished data). These

data indicate that syntaxin 13 regulates Rab4/GRASP-1 associ-

ation with Rab11 endosomes.

Discussion

Complex processes that govern neuronal function have adapted

basic cellular pathways to perform the elaborate information

processing achieved by the brain. Some of these processes, such as

cargo trafficking, require additional layers of control and fine-

tuning. Here, we describe a new molecular mechanism for

regulating endosomal membrane and receptor recycling by

GRASP-1 in neuronal cells. GRASP-1 is a neuronal effector of

Rab4, binds syntaxin 13, and couples Rab4 and Rab11 endosomal

domains. This mechanism has two distinct roles in neuronal

function; first, it is required for AMPAR recycling, and second, it is

critical for dendritic spine morphology.

Regulation of Recycling Endosome Maturation by
GRASP-1

Each organelle carries its own set of Rabs which ensures the

specificity of intracellular membrane transport. Ample examples

show that Rab GTPases and their effectors can confer direction-

ality to membrane traffic and couple different traffic steps [37].

Here, we show that GRASP-1 is a new component of the

molecular machinery that regulates directionality in endosomal

trafficking in neurons. First, GRASP-1 is a novel Rab4 effector

and binds specifically to its active GTP-bound state. Second,

knock-down of GRASP-1 separates Rab4 and Rab11 domains

and moves Rab4 in EEA1/Neep21 positive early endosomal

structures. Accordingly, knock-down of GRASP-1 mimics the

effects of dominant-negative Rab4 and Rab11 on dendritic spine

morphology. Third, GRASP-1 overexpression strongly increases

Rab4/Rab11 colocalization in both neurons and Hela cells. We

propose a model in which GRASP-1 coordinates recycling

endosomal maturation (Figure 12). The term recycling endosome

maturation is used here to discern it from the other endosomal exit

routes, such as the degradative multivesicular body/endosome

Figure 12. Model for the role of GRASP-1 in endosome recycling. Endosomes can be viewed as mosaic distribution of Rab4, Rab5, and Rab11
domains that dynamically interact via effector proteins and SNAREs. The Rab5 domain allows entry into the early/sorting endosome, whereas the
Rab4 and Rab11 domains contain the machinery that is necessary for sorting and recycling membranes and receptors back to the plasma membrane.
(A) GRASP-1 binds to Rab4 and syntaxin 13 and couples Rab4 and Rab11 recycling endosomes. The complex formed between GRASP-1 and t-SNARE
syntaxin 13 might mediate fusion between Rab4 and Rab11 endosomes. (B) Absence of GRASP-1 interferes with complex formation at the recycling
step, causing cargo accumulation in early endosomes, impairment of receptor expression, and changes in spine morphology. (C) Overexpression of
GRASP-1 leads to recruitment of syntaxin 13 and strongly couples Rab4 and Rab11 domains, causing accumulation of internalized receptors in
recycling endosomes. Consistent with the observed decrease in AMPAR clusters [28], Caspase-3 cleavage of GRASP-1 might separate the N-terminal
Rab4 domain from the C-terminal syntaxin 13 binding site and disrupt the coupling between Rab4 and Rab11 domains.
doi:10.1371/journal.pbio.1000283.g012

GRASP-1 Regulates Endosome Recycling

PLoS Biology | www.plosbiology.org 16 January 2010 | Volume 8 | Issue 1 | e1000283



maturation pathway, the retrieval route of mannose 6-phosphate

receptors to the trans Golgi network, or the pathway for

melanogenic enzymes to melanosomes [38].

How does GRASP-1 couple specific Rab domains? Along the

endosomal pathway, bivalent effectors have been found that

connect proximal Rab5 and Rab4 domains on early endosomes

[25]. Since GRASP-1 binds directly to Rab4 but not to Rab11,

additional factors are needed. We found that GRASP-1 binds to

endosomal SNARE protein syntaxin 13. Overexpression of

GRASP-1 separates syntaxin 13 from Neep21 positive structures

and strongly recruits syntaxin 13 to Rab4 positive membranes.

Previous studies have shown that syntaxin 13 is involved in

recycling of endosomal domains [13,35] and is enriched in Rab11

endosomal fractions [34]. Syntaxin 13 also has a function together

with syntaxin 6 in the fusion of early endosomes in vitro [39,40].

We found that mutant syntaxin 13 separates Rab4/GRASP-1 and

Rab11 positive endosomal domains, suggesting a novel function of

syntaxin 13 in the coupling of Rab4 and Rab11 domains by

GRASP-1. Since syntaxin 13 is a constituent of the SNARE core

complex [35] and involved in membrane fusion [36], it is tempting

to speculate that the binding between GRASP-1 and syntaxin 13

recruits the fusion machinery necessary to connect with Rab11

positive membranes. Additional studies are required to determine

the precise functional relationship between GRASP-1 binding to

syntaxin 13 and the SNARE function of syntaxin 13.

The property to bind Rab4 via the N terminus and syntaxin 13

via the C terminus of GRASP-1 supports the model that

membrane bound active Rab4 retains or recruits GRASP-1 on

endosomes and forms a complex with syntaxin 13. This sequence

of interactions could then structurally and functionally link Rab4

to Rab11 membrane domains (Figure 12). Subsequent recruitment

of the other factors on to Rab4-defined membrane domains could

strengthen the interaction with Rab11. It has been speculated that

the GTPase-activating proteins (GAPs) that act on the upstream

Rabs might be effectors of the downstream Rabs [41]. These Rab

cascades and conversions might serve as a positive feedback loop

to specifically concentrate activated Rab4 on Rab11 positive

endosomes. Additional regulation of GRASP-1 by caspase-3

cleavage [28] could separate the N-terminal Rab4 binding domain

from the C-terminal syntaxin 13 binding site, potentially

disrupting the interaction between Rab4 and Rab11 endosomes

(Figure 12).

Role of GRASP-1 in Endosomal AMPAR Recycling
GRASP-1 was originally found to act as a neuronal Ras GEF

and regulate synaptic AMPAR trafficking [28]. We could not

measure detectable GEF activity of GRASP-1 for Ras in vivo, by

filter binding (unpublished data) or sensitive fluorometric

mantGDP assays, nor did we find homology between the

GRASP-1 sequence and known rasGEF domains. Here, we

provide an alternative model for the role of GRASP-1 in AMPAR

traffic and show that GRASP-1 is part of the molecular machinery

that controls endosomal membrane receptor recycling in den-

drites. Indeed, we show that GRASP-1 colocalizes with internal-

ized AMPARs and that knock-down of GRASP-1 decreases

recycling of GluR subunits after AMPA application. Moreover

GRASP-1 regulates synaptic plasticity, especially the late phase of

LTP in hippocampal slices. Previous results show that Rab11 and

syntaxin 13 dominant negative mutants were critical for the entire

time course of LTP [12,22]. We propose that GRASP-1 regulates

a particular step in the endosomal trafficking and is important for

a specific phase of AMPA receptor recycling (Figure 12). In

addition to supplying AMPARs, membrane trafficking from

recycling endosomes also mediates the growth of dendritic spines

[2,22,42]. In accord, GRASP-1 knock-down decreased the total

number of protrusions and mushroom-shaped spines and regulates

endosomal mobility into dendritic spines. As discussed above, the

coupling of endosomal Rab4 and Rab11 domains by GRASP-1 is

an attractive possibility to explain the effects on AMPAR recycling

and spine morphology.

GRASP-1 binds to the seven PDZ domain-containing scaffold-

ing protein GRIP [28] that transports and stabilizes GluR2

containing AMPAR at synapses and intracellular compartments

[5,43]. Rab4 dominant negative and GRASP-1 knock-down had

no effect on GRIP-1 distribution and Rab4/GRASP-1 positive

endosomal structures did not recruit endogenous GRIP (unpub-

lished data), suggesting that GRIP functions in an alternative

trafficking pathway independent of GRASP-1 or the interaction

with GRASP-1 is transient and highly regulated. Interestingly,

GRIP also binds to the early endosomal protein Neep21, which is

crucial for AMPAR sorting through endosomes [44,45]. Since

neuronal activity determines the phosphorylation status of GRIP

and enhances the binding of GRIP and GluR2 with Neep21

[44,45], it is possible that GRIP is under tight control of specific

phosphorylation signaling mechanisms in order to allow for

consecutive protein binding and temporal receptor interactions

[44,45]. Additional studies are required to determine the precise

role of GRIP in endosomal receptor trafficking.

In contrast to AMPA stimulation, GRASP-1 staining strongly

decreased by bath application of NMDA [10,28]. It has been

shown that AMPA and NMDA stimulation induce differential

AMPAR sorting; AMPA stimulation allows AMPARs to enter

the normal recycling pathway, whereas NMDA stimulation

diverts AMPARs to Neep21-positive endosomes and the lyso-

some degradation pathway [10,13]. It is tempting to speculate

that GRASP-1 in AMPA stimulated neurons allows sorting

of internalized AMPARs to the recycling endosomes, while in

response to NMDA, absence of GRASP-1 drives receptors to the

lysosomes. It is possible that different neuronal stimulatory inputs

dynamically control activity of effector complexes and endosomal

trafficking pathways. In this model, GRASP-1 might be part of the

machinery on endosomes that senses and reacts on NMDA

receptor-mediated Ca2+ influx, which is of key importance to

understanding internalized AMPAR and membrane sorting

during plasticity and neuronal circuitry remodeling.

Materials and Methods

Antibodies and DNA Constructs
The following primary antibodies were used in this study: rabbit

anti-GRASP-1 (JH 2730) [28], rabbit anti-NEEP21 [13], rabbit

anti-GRIP1 [43], rabbit anti-Rab4 [46], rabbit anti-GFP [47],

rabbit anti-syntaxin 13 [35]. Rabbit anti-Rab11 was generated by

immunizing animals with GST-Rab11a and affinity purified on

His-Rab11a columns. Anti-GRASP-1 (#5285) was generated by

immunizing rabbits with GST-GRASP-1(1–378) and used for

immuno electronmicroscopy.

The following antibodies were obtained from commercial

sources: rabbit anti-GRASP-1 (AB96361), mouse anti-b-actin,

mouse anti-GluR2 (Chemicon), mouse anti-Rab4, mouse anti-

EEA1 (BD Biosciences), mouse anti-FLAG, mouse anti-MAP2,

mouse anti-atubulin (Sigma), mouse anti-GFP (Roche), mouse

anti-bassoon (Stressgen), rabbit anti-b-galactosidase (MP Biome-

dicals), mouse anti-b-galactosidase (Promega), rabbit anti-GluR1

(Calbiochem), mouse anti-HA (Roche), rabbit anti-myc (Upstate

Biotechnology), mouse LAMP-1 (Stressgen), mouse anti-myc,

rabbit anti-Rab5 (Santa Cruz Biotechnology), rabbit anti-syntaxin

13 (Synaptic Systems), human anti-EEA1, and mouse anti-human
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TfR (ATCC). TfR-594, HRP, and fluorescently labeled secondary

antibodies were from Molecular Probes and Jackson Laboratories,

and agarose beads conjugated with mouse anti-FLAG antibody

were purchased from Sigma. The following mammalian expres-

sion plasmids have been described: pRK5-myc-GRASP-1 [28],

pEF-Flag-Rab4 and pEF-Flag-Rab5 [48], pEGFP-Rab7 [49],

pbactin-HA-b-galactosidase [43], pJPA5-Tfr-GFP [50], Rab3,

Rab4, Rab5, Rab7 and Rab11 cDNA in pGEX, pEGFP or

pcDNA3 [47,51–54], pGEX-Hras(1–166) and pGEX-cdc25(974–

1260) [55], pcDNA3-NEEP21-GFP, pcDNA3-myc-syntaxin 13

[13], pEGFP-Rab11S25N [56], pEGFP-Rab4S22N [57], pGW1-

HA-GluR2 [10], pSuper vector [58], and pSuper-GRIP1-shRNA

[43]. pMT2HA-rasGRP and pMT2HA-ras were obtained from

Hans Bos (Laboratory of Physiological Chemistry, University

Medical Center, Utrecht). Syntaxin constructs were obtained as

indicated; pGEX-syntaxin1DTM and pGEX-syntaxin2DTM

(Ruud Toonen, CNCR, VU, Amsterdam), pGEX-syntaxin6DTM

(Suzanne Pfeffer, Stanford School of Medicine), and pGEX-

syntaxin13DTM (Andrew Peden, CIMR, Cambridge).

GRASP-1 truncation constructs and GRASP-1 mutant lacking

aa280–300 were made with PCR from full-length GRASP-1 cDNA

1 [28]. GRASP-1* rescue constructs were prepared by a PCR-based

strategy to introduce four silent substitutions in the target site. The

target sequence GCTCTCTGAGAAATTGAAA was modified

into GCTTTCGGAAAAGTTGAAA. Syntaxin-1A (BC100446;

image: 6595634), syntaxin-2 (BC047496; image: 5296500), and

syntaxin-6 (BC009944; image: 4122224) cDNA was purchased

from Geneservice. For neuronal expression, all cDNAs were

subcloned in pGW1- and pbactin-expression vectors with various

tags [43]. Myc-syntaxin 13DTM (aa1–245) was made by PCR from

full-length syntaxin 13 cDNA. The rat GRASP-1 (accession

NM_053807) smartpool siRNA (cat# L-096315-01) was from

Dharmacon. Another set of three separate siRNAs targeting rat

GRASP-1 was purchased from Ambion (cat# AM16798A).

GRASP-1-siRNA2 (siRNA ID#192942, GCUCUCUGAGAAA-

UUGAAAtt) yielded most efficient knock-down in INS1 cells and

was cloned in pSuper plasmid for knock-down of GRASP-1 in rat

hippocampal neurons. GRASP-1 shRNA#5 (GTCCCAGCA-

CAAAGAAGAA) was designed by using the siRNA selection

program at the Whitehead Institute for Biomedical Research [59]

(jura.wi.mit.edu/bioc/siRNAext). The sequence for the Luciferase

shRNA is CGTACGCGGAATACTTCGA [60].

Preparation of Tissue Extracts
For tissue Western blots, cerebral cortex, cerebellum, midbrain,

spinal cord, kidney, liver, and spleen were dissected from P30

mice. Frozen tissue samples and cultured cells were homogenized

in PBS/1%Triton-6100, and then an equal volume of 26 SDS

sample buffer was added, and the samples were boiled. Protein

concentrations were measured using a BCA protein assay kit

(Pierce), and 20 mg of protein was loaded in each lane for a

subsequent Western blot analysis.

GST-Rab Pull-Down Assays
Preparation of pig brain cytosol, purification of GST-Rab fusion

proteins, isolation of Rab4GTP-interacting proteins in pull-down

assays and binding assays with 35S-labeled GRASP-1 were done as

described [52,61]. To determine the Rab4 binding region on

GRASP-1, we expressed pRK5-myc GRASP-1 or pGW1-GFP-

GRASP-1 truncations in COS-7 cells. Cells were washed in ice-

cold PBS and lysed in 20 mM Hepes pH 7.4, 100 mM NaCl,

5 mM MgCl2 (lysis buffer) containing 0.5% NP-40, 5 mg/ml

leupeptin, 10 mg/ml aprotinin, 1 mg/ml pepstatin, 1 mM PMSF,

20 mM GMP-PNP, and 1 mM DTT. Detergent lysates were

shaken for 20 min at 4uC, centrifuged for 10 min at maximum

speed in a cooled Eppendorf centrifuge, diluted with lysis buffer to

0.2% NP-40, and incubated with Rab4-GMP-PNP beads for 2 h

at 4uC. Beads were washed four times with lysis buffer containing

0.2% NP-40, 20 mM GMP-PNP, and 1 mM DTT. Bound

proteins were eluted in Laemmli sample buffer and analyzed by

Western blot and detection with anti-myc antibody. To determine

whether Rab4, GRASP-1, and syntaxin 13 can form a ternary

complex, we transfected COS-7 cells with pGW1-myc-syntaxin 13

with and without pGW1-GFP-GRASP-1. Cells were lysed in

20 mM Na Hepes pH 7.5, 100 mM NaCl, 1% TX-100, and

cleared detergent lysates were incubated with GST-Rab4 or GST

beads. Beads were washed three times with lysis buffer, and bound

protein was assayed by Western blot with monoclonal antibodies

against GFP and myc epitope tags.

Binding Assays with GST-Syntaxins
GST-syntaxin fusion proteins lacking the transmembrane

domain were expressed in Escherichia coli BL21(DE3), immobilized

on GSH beads, and used for binding assays with lysates of COS-7

cells transfected with GFP-GRASP-1(594–837). Binding assay of

GST-syntaxin13DTM and 35S-labeled GRASP-1, produced in a

coupled in vitro transcription-translation reaction, was done as

described [61]. For mapping the syntaxin 13 binding domain on

GRASP-1, we expressed C terminal pGW1-GFP-GRASP-1

constructs in COS-7 cells. The cells were metabolically labeled

for 30 min with 0.5 mCi/ml 35S-methionine/Pro-Mix (Perkin

Elmer), and detergent lysates were then subjected to a GST pull-

down assay on GST-syntaxin13DTM as described above. Bound

proteins were released by boiling the beads 8 min in 0.1 ml 1%

SDS/PBS, and GFP-tagged GRASP-1 truncations were immu-

noprecipitated with a rabbit GFP antibody and analyzed by

phosphorimaging as before [62].

Mass Spectrometry
Eluates were boiled in Laemmli sample buffer, resolved on a

7.5% SDS-PAA gel, and silver-stained. Bands of interest were

excised and in-gel digested using modified trypsin (Roche

Diagnostics, Indianapolis, IN) in 50 mM ammonium bicarbonate.

The peptide mixtures were analyzed by LC/MS/MS using a Q-

ToF hybrid mass spectrometer (Micromass, Waters) equipped with

a Z-spray source and coupled on-line with a capillary chroma-

tography system. The peptide mixtures were delivered to the

system using a Famos autosampler (LC Packing) at 3 ml/min and

trapped on an AquaTM C18RP column (Phenomenex; column

dimension 1 cm6100 mm i.d., packed in house). The sample was

then fractionated onto a C18 reverse-phase capillary column

(PepMap, LC Packing; column dimension 25 cm675 mm i.d.) at a

flow rate of 150–200 nl/min using a linear gradient of acetonitrile.

The mass spectrometer was set up in a data-dependent MS/MS

mode where a full scan spectrum (m/z acquisition range from 400

to 1,600 Da/e) was followed by a tandem mass spectrum (m/z

acquisition range from 100 to 1,800 Da/e). The precursor ions

were selected as the most intense peaks of the previous scan.

Suitable collision energy was applied depending on the mass and

charge of the precursor ion. ProteinLynx software, provided by the

manufacturers, was used to analyze raw MS and MS/MS spectra

and to generate a peak list which was introduced in the MASCOT

MS/MS ion search software for protein identification.

Immunoprecipitation
COS-7 cells were cotransfected with pEF-FLAG-Rab4 or pEF-

FLAG-Rab5 and GRASP-1 constructs and co-immunoprecipita-

tions were done as described [47]. Immune complexes were eluted
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with FLAG peptide and analyzed by Western blot with a mouse

monoclonal antibody against GFP and rabbit antibody against

FLAG. For interaction studies between GRASP-1 and syntaxin

13, COS-7 cells were transfected with pGW1-GFP-GRASP-1, and

pGW1-myc-syntaxin 1, pGW1-myc-syntaxin 2, or pGW1-myc-

syntaxin 13. To determine the region of GRASP-1 that bound to

syntaxin13, we transfected COS-7 cells with pGW1-myc-GRASP-

1, pGW1-myc-GRASP-1(1–695) or pGW1-myc-GRASP-1(695–

837) and pGW1-GFP-syntaxin-13. Cells were lysed in 20 mM

Hepes pH 7.4, 200 mM NaCl, 1% NP-40, and protease

inhibitors. Detergent lysates were passed 206 through a 27-gauge

needle and centrifuged at maximum speed in a cooled Eppendorf

centrifuge. The supernatant was incubated for 2 h with Rabbit

GFP antibody coated beads at 4uC. Beads were washed four times

with 20 mM Hepes pH 7.4, 200 mM NaCl, 1% NP-40, and

immune complexes were eluted by heating for 5 min in reducing

Laemmli sample buffer. Eluates were resolved by SDS-PAGE and

analyzed by Western blot with monoclonal antibody against myc.

In Vitro GEF Assay
GST-Rab4, H-ras(1–166), GST-GRASP-1(1–594), and GST-

cdc25(974–1260) were expressed in E. coli CK600K. Bacteria were

grown at 37uC until OD600 of 0.8. IPTG was added to 1 mM and

bacteria were incubated overnight at room temperature. Cells

were resuspended in 50 mM Tris HCl pH 7.5, 50 mM NaCl, 5%

glycerol, 5 mM DTE, and 5 mM MgCl2 and lysed by sonication.

Insoluble material was removed by centrifugation at 30,000 g, and

in case of GST fusion proteins, the supernatant was loaded on a

20 ml GSH-column (Pharmacia). The column was washed with 5

volumes 50 mM Tris HCl pH 7.5, 400 mM NaCl, 5% glycerol

5 mM MgCl2, and 5 mM DTE and 2 volumes of 50 mM Tris

HCl pH 7.5, 50 mM NaCl, 2.5% glycerol 10 mM CaCl2, 5 mM

MgCl2, and 5 mM DTE (buffer T). The proteins were cleaved

with 80 units of thrombin (Serva) in buffer T on the column and

elute with buffer T. Protein containing fractions were concentrated

using a Millipore concentrator unit. Further purification was

achieved by gel filtration on a Superdex 75 (16/60) column

(Pharmacia), equilibrated with 50 mM Tris HCl pH 7.5, 50 mM

NaCl, 2.5% glycerol, 5 mM MgCl2, and 5 mM DTE. GTPases

were loaded with 29-(39)-O-(N-methylanthraniloyl)-guanosinedi-

phosphate (mantGDP) as described for rap [55]. Nucleotide

exchange reactions were carried out as described [55]. In brief,

200 nM mantGDP loaded GTPase was incubated at 25uC in

50 mM Tris HCl pH 7.5, 50 mM NaCl, 5 mM MgCl2, 5 mM

DTE, and 5% glycerol in the presence of an 100-fold molar excess

of GDP. Exchange factors were added as indicated. The

fluorescence intensity was measured over time in a Cary Eclipse

Spectrofluorometer (Varian), with excitation at 340 nm and

emission at 460 nm.

In Vivo GEF Assay
COS-7 cells were transfected with pMT2HA-Hras together

with pMT2HA-rasGRP, pGW1-myc GRASP-1, or pGW1-myc.

Cells expressing HA-ras were incubated with and without 10 ng/

ml EGF, and cells co-expressing HA-ras and HA-rasGRP were

incubated with or without 10 mM Phorbol 12-Myristate 13-

Acetate (PMA). After 5 min, the cells were lysed in 100 mM NaCl,

1% NP40, and 20 mM Hepes pH 7.5. Cleared lysates were

incubated for 3 h with GSH beads containing the ras binding

domain of Raf-1 [63]. Beads were washed in lysis buffer. Bound

HAras-GTP and expression levels of HA-Hras, HA-rasGRP, and

myc-GRASP-1 were determined by Western blot with monoclonal

HA and myc antibodies, respectively.

Cultured Cells and Transfection
Hela cells and COS-7 cells were grown in DMEM containing

10% fetal calf serum, antibiotics, and 2 mM glutamine. Transfer-

rin (Tf) uptake experiments in Hela cells were done as described

[52]. INS1 cells were grown in RPMI 1640 with the same

additions and 0.2 mM Na pyruvate and 50 mM b-mercaptoetha-

nol. Cells were transfected using FuGENE6 (Roche) or Lipofecta-

mine 2000 (Invitrogen) and used in experiments after 16–24 h.

siRNAs (100 nM final concentration) were transfected with

Lipofectamine 2000 in INS1 cells. After 3 d, cells were lysed

and expression level of endogenous GRASP-1 was determined by

Western blot.

Primary Hippocampal Neuron Cultures, Transfection, and
Immunohistochemistry

Primary hippocampal cultures were prepared from embryonic

day 18 (E18) rat brains [64]. Cells were plated on coverslips coated

with poly-L-lysine (30 mg/ml) and laminin (2 mg/ml) at a density

of 75,000/well. Hippocampal cultures were grown in Neurobasal

medium (NB) supplemented with B27, 0.5 mM glutamine,

12.5 mM glutamate, and penicillin/streptomycin. Hippocampal

neurons were transfected using Lipofectamine 2000 (Invitrogen).

Briefly, DNA (3.6 mg/well) was mixed with 3 ml Lipofectamine

2000 in 200 ml NB, incubated for 30 min and then added to the

neurons in NB at 37uC in 5% CO2 for 45 min. Next, neurons

were washed with NB and transferred in the original medium at

37uC in 5% CO2 for 2–4 d.

For immunohistochemistry, neurons were fixed for 5 min with

ice-cold 100% methanol/1mM EGTA at 220uC, followed by

5 min with 4% formaldehyde/4% sucrose in phosphate-buffered

saline (PBS) at room temperature. After fixation, cells were

washed three times in PBS for 30 min at room temperature and

incubated with primary antibodies in GDB buffer (0.2% BSA,

0.8 M NaCl, 0.5% Triton X-100, 30 mM phosphate buffer,

pH 7.4) overnight at 4uC. Neurons were then washed three times

in PBS for 30 min at room temperature and incubated with

Alexa-conjugated secondary antibodies in GDB for 2 h at room

temperature and washed three times in PBS for 30 min. Slides

were mounted using Vectashield mounting medium (Vector

laboratories). Confocal images were acquired using a Zeiss LSM

510 confocal laser-scanning microscope with a 406 or 636 oil

objective.

Surface and Intracellular Staining of AMPA Receptors
Surface staining of endogenous AMPARs was performed as

described [10,43]. Hippocampal neurons were ‘‘live’’ incubated

with 10 mg/ml rabbit anti-GluR1 (Calbiochem (1:8)) and mouse

anti-GluR2 (Zymed (1:80)) N-terminal antibodies at 37uC for

15 min. After brief washing in prewarmed DMEM, neurons were

either returned to conditioned medium (for control incubation) or

stimulated for 2 min with 100 mM AMPA and 50 mM APV or

50 mM NMDA, washed in DMEM, returned to conditioned

medium and incubated for the given time. The neurons were fixed

for 5 min with 4% formaldehyde/4% sucrose in PBS, followed by

three washes in PBS (30 min at room temperature) and incubated

with secondary antibody conjugated to Alexa488 (1:400) or

Alexa568 (1:400) in GDB buffer without detergent (0.2% BSA,

0.8 M NaCl, 30 mM phosphate buffer, pH 7.4) overnight at 4uC
followed by a further three washes in PBS (30 min at room

temperature).

The fluorescent-based AMPAR internalization assay was

performed as described [10]. Hippocampal neurons transfected

with HA-tagged GluR2 subunits were ‘‘live’’ labeled with
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10 mg/ml mouse anti-HA antibody (12CA5, Roche) by incubating

coverslips in conditioned medium for 10 min at 37uC. After brief

washing in prewarmed DMEM, neurons were either returned to

conditioned medium (for control incubation) or stimulated for

2 min with 100 mM AMPA and 50 mM APV (selective NMDA

receptor antagonist) or 50 mM NMDA, returned to conditioned

medium and incubated for the given time. Neurons were fixed in

4% formaldehyde/4% sucrose for 8 min at room temperature,

and surface-remaining receptors were visualized with Alexa633-

conjugated secondary antibody. Internalized receptors were

detected with Alexa488-conjugated secondary antibody after

permeabilizing cells in methanol (220uC) for 2 min. To determine

colocalization, the neurons were immunostained with antibodies

against GRASP-1 in GDB without detergent overnight at 4uC and

incubated with Alexa568-conjugated secondary antibodies for 2 h

at room temperature.

The AMPAR recycling assay was performed as described [33].

After live staining for surface HA-GluR2 as indicated above,

neurons were washed and either returned to conditioned medium

(for control incubation) or stimulated for 2 min with 100 mM

AMPA and 50 mM APV. The remaining surface anti-HA

antibodies were stripped away by stripping buffer (0.5 M NaCl/

0.2 M acetic acid) on ice for 4 min and washed extensively with

cold TBS (Tris-buffered saline) and returned back to conditioned

media at 37uC for 45 min for recycling. After recycling, neurons

were fixed in 4% formaldehyde/4% sucrose, and HA-GluR2

recycled back to the surface was detected with Alexa633-

conjugated secondary antibodies. Neurons were permeabilized,

and internal HA-GluR2 was detected with Alexa568-conjugated

secondary antibodies.

Immunohistochemistry and Confocal
Immunofluorescence

The mouse spinal cord was sectioned at 40 mm with a freezing

microtome. Sections were processed free floating, employing

double-labeling immunofluorescence [65]. The antibodies were

diluted in Tris-Buffered-Saline (TBS, pH7.6) containing 1%

normal horse serum and 0.2% Triton X-100. Sections stained

for immunofluorescence were analyzed with a Zeiss LSM 510

confocal laser-scanning microscope.

Time-Lapse Live Cell Imaging
During imaging, neurons were maintained at 37uC in standard

culture medium in a closed chamber with 5% CO2 (Tokai Hit;

INUG2-ZILCS-H2). To visualize mRFP-GRASP-1 and GFP-

Rab4 or mRFP-GRASP-1 and GFP-Rab11 in neurons, near-

simultaneous dual color (green and red) time-lapse live cell

imaging was performed using Total Internal Reflection Fluores-

cence microscopy (TIRFM) on a Nikon Eclipse TE2000E (Nikon),

equipped with Nikon TIRF arm, CFI Apo TIRF 10061.49 N.A.

oil objective (Nikon), Coolsnap camera (Roper Scientific), and

controlled by MetaMorph 7.1 software (Molecular Devices). For

excitation, the 488 nm laser line of an argon laser (Spectra-Physics

Lasers) and a 561 nm laser (Spectra-Physics) were used in

combination with a ETGFP/mCherry filter cube (Chroma). A

filterwheel (Sutter instruments) with GFP and Cherry emission

filters (both Chroma) and synchronized with laser emission

alternatingly exposed the camera to GFP or Cherry emission.

For glycine treatments, the same microscope was used with regular

widefield illumination by a mercury lamp. Glycine treatments

were performed as described in [2]. Images of live cells were

processed and analyzed using MetaMorph, Adobe Photoshop, or

LabVIEW (National Instruments) software.

Image Analysis and Quantification
Confocal images of transfected neurons were obtained with

sequential acquisition settings at the maximal resolution of the

microscope (1,02461,024 pixels). Each image was a z-series of 6–8

images, each averaged 2 times and was chosen to cover the entire

region of interested from top to bottom. The resulting z-stack was

‘‘flattened’’ into a single image using maximum projection. Images

were not further processed and were of similar high quality to the

original single planes. The confocal settings were kept the same for

all scans when fluorescence intensity was compared. Morphomet-

ric analysis, quantification, and colocalization were performed

using MetaMorph software (Universal Imaging Corporation).

Morphometric analyses of hippocampal neurons. To

visualize the dendritic protrusions, we used b-gal or GFP as an

unbiased cell-fill. Because protrusions often crossed several z planes,

we took series of stacks from the bottom to the top of all dendrites

and used the LSM software to generate image projections for

quantitative analyses. All morphological experiments were repeated

at least three times with an n.7 for individual experiments and

were analyzed in a double-blind manner. Between 150 and 300

protrusions were scored for every neuron and expressed per 10 mm

length of dendrite. Measurements of length and width of the

protrusions were performed as described previously [66] and were

classified based on the ratio of spine head width to protrusion length

according to the following ratios: the spine whose width was equal to

or more than half the size of its length was judged as standard

mushroom spine. The protrusion whose width was smaller than half

the size of its length was judged as filopodia or thin spine. In those

cases where the total length of the spine could not be adequately

seen or its length was .5 mm, protrusions were excluded from

analysis.

Quantification of TfR-GFP distribution in spines. Mea-

surements of TfR-GFP localization in spines and dendrites was

performed as described [2]. Confocal images of hippocampal

neurons filled with b-gal (red) and labeled for TfR-GFP were

analyzed using Metamorph software. The dendritic localization of

TfR positive structures relative to spines was categorized according

to the presence of GFP signal at the base (a), in the neck (b), or in

the head (c) of spines.

Colocalization of fluorescent signals in dendrites and cell

body. Colocalization of two fluorescent signals was determined

using ‘‘colocalization’’ module in Metamorph software as described

[10]. The colocalization module provides intensity measurements of

the region overlap between signals in red and green channels of

image projections. To minimize random overlap due to projection

of confocal images, a single optical section from the z series stack

that showed the largest amount of fluorescent signals was used to

determine the degree of colocalization in the cell body. Statistical

analysis was performed with Student’s t test assuming two-tailed

distribution and unequal variation. n was defined as the number of

transfected cells.

Quantification of surface and internalized AMPARs. To

measure AMPAR internalization and recycling, images for all

conditions in individual experiments were analyzed by using

identical microscope settings. Images from each experiment were

thresholded, and total staining intensity of surface and internalized

GluR1 and/or GluR2 was measured along selected dendritic areas

using Metamorph. The internalization index refers to intracellu-

lar fluorescence divided by surface fluorescence normalized to

untreated control neurons. For experiments comparing inter-

nalized and surface staining of AMPARs, dendritic areas were

manually drawn and staining intensity in the same selected area

was measured in the different channels. The recycling index was

calculated as the ratio of surface fluorescence divided by the
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internalized fluorescence and normalized to unstimulated wild-

type control neurons.

Analysis of morphological changes upon glycine

treatment. For each protrusion, length and maximum width

were measured in MetaMorph. Only protrusions longer than 7

pixels (450 nm) were included in the analysis. Protrusions were

identified as spines if their width was greater than half their length

or greater than 10 pixels (645 nm). Spine growth was probed as

the change in sum of spine widths per 10 um and comprises both

addition of new spines and growth of pre-existing spines.

Immuno Electronmicroscopy
Hippocampal neurons (DIV.21) were fixed in paraformalde-

hyde or a mixture of paraformaldehyde/glutaraldehyde and

processed for immunoelectronmicroscopy on ultrathin cryosec-

tions as described [67]. Sections were labeled with mouse

monoclonal antibody against rab4, and rabbit antibodies against

syntaxin 13 [35], or GRASP-1 (#5285).

Electrophysiology
Electrophysiological recordings were carried out from organo-

typic slice cultures as described [68]. Neurons were transfected

using a biolistic gene gun (Bio Rad) at DIV 3–4 (100 mg DNA;

90% of the construct to test; 10% pCAG-EGFP). Electrophysio-

logical recordings were performed at 5–6 d after transfection.

Recordings were carried out in solution containing NaCl, 119

(mM); KCl, 2.5; CaCl2, 4; MgCl2, 4; NaHCO3, 26; NaH2PO4, 1;

glucose, 11; picrotoxin, 0.15; and 2-chloroadenosine, 0.01 for

measuring AMPAR- and NMDAR-EPSC and 0.002 for LTP

experiments with 5% CO2/95% O2, at pH7.4. Whole-cell

recordings were made simultaneously from a pair of CA1

pyramidal neurons, one transfected and one untransfected, and

synaptic responses were evoked by tungsten bipolar electrode

placed in CA1 stratum radiatum area with the frequency of

0.2 Hz. AMPAR-mediated EPSCs were measured at 260 mV

and NMDAR-EPSCs were recorded at 240 mV in the presence

of NBQX (0.01 mM). AMPAR-EPSCs for LTP experiment were

measured at 280 mV and LTP was induced by pairing 2 Hz

stimulation with depolarization of the postsynaptic cell to 0 mV

for 100 s. Statistical significance was evaluated with the Mann-

Whitney test (Figure 5A,B) and t test (Figure 5C,D).

Supporting Information

Figure S1 Localization of Rab4 and GRASP in vivo.
Mouse spinal cord sections of 40 mm were double-labeled for

endogenous GRASP-1 (green) and Rab4 (red). Sections were

examined on a Zeiss LSM510 at low magnification to obtain the

overview image (top row) or high magnification (bottom row).

Arrowheads denote colocalization between GRASP-1 and Rab4

as also shown in the inset with merged colors.

Found at: doi:10.1371/journal.pbio.1000283.s001 (3.04 MB TIF)

Figure S2 Rab4 dominant negative mutant affects
GRASP-1 localization. (A–C) Representative images of hippo-

campal neurons transfected with GDP-bound dominant negative

mutant GFP-Rab4S22N at DIV13 for 2 d and stained for

endogenous GRASP-1 (A), syntaxin 13 (B), or Neep21 (C). Note

that in the neurons transfected with Rab4S22N, almost no

GRASP-1 puncta are present in somatodendritic compartments

while the localization of syntaxin 13 and Neep21 is unchanged.

Arrows indicate transfected neurons in the red channel. Bar is

10 mm. (D–F) Quantification of GRASP-1 fluorescence intensities

in cell body of hippocampal neurons transfected as indicated in

(A–C). Graphs show mean 6 SEM normalized to neighboring

neurons. *** p,0.0005.

Found at: doi:10.1371/journal.pbio.1000283.s002 (3.54 MB TIF)

Figure S3 GRASP-1 shRNA suppresses expression of
GRASP-1. (A) Representative images of hippocampal neurons

cotransfected at DIV13 with GFP and either pSuper, pSuper-

GRASP-1-shRNA#2, or -shRNA#5 and visualized after 4 d with

rabbit antibody against GRASP-1 (red) and GFP (green). Cell body

(inset) is enlarged to show loss of GRASP-1 immunoreactivity in

GRASP-1-shRNA transfected neurons. Bar is 10 mm. (B) Quanti-

fication of GRASP-1 fluorescence intensities in cell body and

dendrites of hippocampal neurons transfected at DIV13 for 4 d

with GFP and either pSuper, pSuper-GRASP-1-shRNA#2, or

-shRNA#5. Staining was done with two distinct rabbit anti-

GRASP-1 antibodies: clone JH 2730 and AB96361. Graph shows

mean 6 SEM normalized to pSuper control neurons. *** p,0.0005.

(C) Western blot of lysates prepared from INS-1 cells transfected

with 100 nM (final concentration) of three siRNAs (Ambion),

a smartpool (Dharmacon), or control scrambled siRNA (Dharma-

con) for 3 d. siRNA#2 and the smartpool reduced GRASP-1

expression to 15% and 23%, respectively. We cloned the siRNA#2

sequence in pSuper in order to generate pSuper-GRASP-1-

shRNA#2 (A,B).

Found at: doi:10.1371/journal.pbio.1000283.s003 (3.01 MB TIF)

Figure S4 Internalized HA-GluR2 colocalizes with
GRASP-1. (A) Representative merge image of surface HA-GluR2

(blue) and internalized HA-GluR2 (green) in soma and dendrites

of hippocampal neurons labeled for GRASP-1 (red) after 0, 10,

and 30 min 100 mM AMPA plus 50 mM APV (AMPA) stimula-

tion. (B) Quantification of the percentage of colocalization of

internalized GluR2 with GRASP1 after AMPA/APV treatment

at different time points. Each data point represents mean6S.E.M.

(5 neurons for each time point). (C) Representative images of

neurons triple transfected at DIV13 with GFP and HA-GluR2 and

either pSuper control vector or pSuper-GRASP-1-shRNA#2.

After 4 d, neurons are ‘‘live’’ labeled with anti-HA antibody for

15 min, followed by 10 min incubation in conditioned medium

(control, no treatment) or 2 min incubation in conditioned

medium containing 100 mM AMPA plus 50 mM APV (AMPA)

followed by additional 8 min in conditioned medium. The

neurons are stained for surface and internalized HA-GluR2. (D)

Quantification of intracellular accumulation assays, measured as

the ratio of internalized/surface fluorescence (internalization

index), normalized to GluR2 10 min control (no treatment).

Graph shows mean 6 S.E.M. (10 neurons for each condition). (E)

Representative merge images of neurons cotransfected at DIV13

with HA-GluR2 and either pSuper control vector or pSuper-

GRASP-1-shRNA#2 and stained for internalized HA-GluR2

(red) and lysosomal marker Lamp1 (green) in the cell body after

stimulation for 30 min with AMPA. (F) Quantification of

the percentage of colocalization of internalized GluR2 with

Lamp1 as indicated in (E). Graph shows mean 6 S.E.M. (5

neurons each). ** p,0.005.

Found at: doi:10.1371/journal.pbio.1000283.s004 (2.15 MB TIF)

Figure S5 GRASP-1 colocalizes with Rab4 and Rab11 in
Hela cells. (A) Hela cells co-transfected with myc-GRASP-1 and

GFP-Rab4, GFP-Rab5, GFP-Rab7, or GFP-Rab11. Bar is 10 mm.

(B) Percentage of colocalization between GRASP-1 and Rab

proteins in Hela cells as indicated in (A).

Found at: doi:10.1371/journal.pbio.1000283.s005 (2.99 MB TIF)

Figure S6 GRASP-1 colocalizes with endogenous recy-
cling endosome markers. Representative images of cell bodies
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of hippocampal neurons transfected with GFP-GRASP-1 and

labeled with anti-Rab4, anti-Rab5, anti-Rab11, anti-NEEP21, or

anti-syntaxin 13 antibodies (all red).

Found at: doi:10.1371/journal.pbio.1000283.s006 (2.27 MB

DOC)

Figure S7 GRASP-1 regulates EEA1 distribution in Hela
cells. (A) Percentage of colocalization between EEA1 and Rab4

or Rab5 in Hela cells with and without transfected myc-GRASP-1

as shown in (C,D). Error bars indicate S.E.M. *** p,0.0005. (B)

Hela cells transfected with myc-GRASP-1 and double labeled with

anti-EEA1 (red) and anti-myc (green) antibodies. Note the lack of

colocalization between EEA1 and GRASP1. Bar is 10 mm. (C–D)

Hela cells co-transfected with GFP-Rab4 (C) or GFP-Rab5 (D)

with and without myc-GRASP-1. Cells were labeled with anti-

EEA1 (red) and anti-myc (blue) antibodies. Bar is 10 mm.

Found at: doi:10.1371/journal.pbio.1000283.s007 (2.50 MB TIF)

Figure S8 GRASP-1 segregates Rab4 from NEEP21
positive endosomal membranes. (A) Representative images

of hippocampal neurons double labeled with anti-EEA1 (green)

and anti-NEEP21 (red) antibodies. Dendritic segments are

enlarged to show the distribution of the markers (bottom). (B,C)

Representative images of dendrites of hippocampal neurons

cotransfected at DIV13 for 4 d with GFP-Rab5 (B) or GFP-TfR

(C) and labeled with anti-NEEP21 (red). (D) Representative images

of dendrites of hippocampal neurons cotransfected at DIV13 for

4 d with GFP-Rab4 and pSuper control vector, myc-GRASP-1, or

pSuper-GRASP-1-shRNA#2 and labeled with anti-NEEP21 (red)

and anti-myc (blue) antibodies.

Found at: doi:10.1371/journal.pbio.1000283.s008 (1.30 MB TIF)

Figure S9 GRASP-1 coincides with Rab4 and syntaxin 13
in Hela cells. (A) Hela cells co-transfected with GFP-GRASP-1

and myc-syntaxin 1, myc-syntaxin 2, or myc-syntaxin 13. (B) Hela

cells triple transfected with GFP-GRASP-1, myc-syntaxin 13, and

HA-Rab4. Bar is 10 mm.

Found at: doi:10.1371/journal.pbio.1000283.s009 (3.70 MB

DOC)

Figure S10 Both N and C terminus are necessary for
GRASP-1 localization to endosomes. Hela cells transfected

with full-length mRFP-GRASP-1 (1–837) or truncated mRFP-

GRASP-1 constructs and labeled with anti-TfR antibodies (green).

Bar is 10 mm.

Found at: doi:10.1371/journal.pbio.1000283.s010 (5.64 MB TIF)

Video S1 GFP-Rab4 (left) and mRFP-GRASP-1 (right) in
hippocampal neurons visualized using TIRF. This video

corresponds to Figure 2G. Total time 3 min. Acquired at 0.5

frame per second. 306 sped up.

Found at: doi:10.1371/journal.pbio.1000283.s011 (3.88 MB AVI)

Video S2 GFP-Rab4 (left) and mRFP-GRASP-1 (middle)
in hippocampal neurons visualized using TIRF. This

video corresponds to Figure 2G. Right movie shows GFP and RFP

in green and red, respectively. Total time 3 min. Acquired at 0.5

frame per second. 306 sped up.

Found at: doi:10.1371/journal.pbio.1000283.s012 (1.70 MB AVI)

Video S3 GFP-Rab11 (left) and mRFP-GRASP-1 (right)
in hippocampal neurons visualized using TIRF. This

video corresponds to Figure 7B. Total time 3:22 (min:s). Acquired

at 1 frame per second. 306 sped up.

Found at: doi:10.1371/journal.pbio.1000283.s013 (5.52 MB AVI)

Video S4 GFP-Rab11 (left) and mRFP-GRASP1 (middle)
in hippocampal neurons visualized using TIRF. This

video corresponds to Figure 7B. Right movie shows GFP and RFP

in green and red, respectively. Total time 3:22 (min:s). Acquired at

1 frame per second. 306 sped up.

Found at: doi:10.1371/journal.pbio.1000283.s014 (1.01 MB AVI)
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