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Regulation of α-synuclein by chaperones in 
mammalian cells

Björn M. Burmann1,2,3,9*, Juan A. Gerez4,9, Irena Matečko-Burmann1,3,5, Silvia Campioni4,7, 
Pratibha Kumari4, Dhiman Ghosh4, Adam Mazur1, Emelie E. Aspholm2,3, Darius Šulskis2,3, 
Magdalena Wawrzyniuk6,8, Thomas Bock1, Alexander Schmidt1, Stefan G. D. Rüdiger6,  
Roland Riek4* & Sebastian Hiller1*

Neurodegeneration in patients with Parkinson’s disease is correlated with the 
occurrence of Lewy bodies—intracellular inclusions that contain aggregates of the 
intrinsically disordered protein α-synuclein1. The aggregation propensity of 
α-synuclein in cells is modulated by specific factors that include post-translational 
modifications2,3, Abelson-kinase-mediated phosphorylation4,5 and interactions with 
intracellular machineries such as molecular chaperones, although the underlying 
mechanisms are unclear6–8. Here we systematically characterize the interaction of 
molecular chaperones with α-synuclein in vitro as well as in cells at the atomic level. 
We find that six highly divergent molecular chaperones commonly recognize a 
canonical motif in α-synuclein, consisting of the N terminus and a segment around 
Tyr39, and hinder the aggregation of α-synuclein. NMR experiments9 in cells show 
that the same transient interaction pattern is preserved inside living mammalian cells. 
Specific inhibition of the interactions between α-synuclein and the chaperone HSC70 
and members of the HSP90 family, including HSP90β, results in transient membrane 
binding and triggers a remarkable re-localization of α-synuclein to the mitochondria 
and concomitant formation of aggregates. Phosphorylation of α-synuclein at Tyr39 
directly impairs the interaction of α-synuclein with chaperones, thus providing a 
functional explanation for the role of Abelson kinase in Parkinson’s disease. Our 
results establish a master regulatory mechanism of α-synuclein function and 
aggregation in mammalian cells, extending the functional repertoire of molecular 
chaperones and highlighting new perspectives for therapeutic interventions for 
Parkinson’s disease.

We characterized the interactions of an array of molecular chaperones 
with α-synuclein on the basis of previous findings that have shown that 
molecular chaperones share common patterns of client recognition10,11. 
The array included human HSC70 and HSP90β, and bacterial chap-
erones SecB, Skp, SurA and Trigger Factor, all of which have strongly 
diverse architectures10. All of these chaperones interfered functionally 
with the aggregation of α-synuclein in a thioflavin T assay6,8,12, show-
ing effects already at a stoichiometry of 1:20 (chaperone:α-synuclein) 
and even stronger effects at 1:10 ratios (Fig. 1a–c). The known HSP90 
inhibitors geldanamycin and radicicol (referred to hereafter as drugs) 
decreased the chaperoning effect of HSP90β (Fig. 1c), consistent with 
the known mechanism of these drugs13,14. We determined the segments 
of α-synuclein that interact with the individual chaperones at the atomic 
level by measuring the attenuation of the NMR signal intensity and 
chemical-shift perturbations using two-dimensional [15N, 1H]-NMR 

spectroscopy. For all 6 chaperones, the effects were most pronounced 
for 12 amino acid residues at the N terminus and for 6 residues around 
Tyr39, indicating that a direct—albeit transient—intermolecular interac-
tion occurs via these 2 segments, which are therefore identified as the 
canonical chaperone-interaction motif of α-synuclein (Fig. 1d–g and 
Extended Data Figs. 1, 2). Inhibition of HSP90β using drugs partially 
impaired the interaction with α-synuclein. For HSC70, the interac-
tion was observed in the ADP-bound (HSC70ADP) and the ATP-bound 
(HSC70ATP), but not the apo, state (Fig. 1g and Extended Data Fig. 3), 
consistent with previous reports6,15,16 (Supplementary Discussion). 
Notably, for all six chaperones, the interactions were observed at 
protein concentrations of 100 μM, which suggests that these interac-
tions are unlikely to arise from nonspecific effects of macromolecular 
crowding. We investigated such nonspecific effects using high con-
centrations of either bovine serum albumin (BSA) or ubiquitin. The 
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signal was not attenuated after addition of 150–310 mg ml−1 ubiquitin, 
thus excluding the possibility that these interactions arose because 
of macromolecular crowding effects. For high concentrations of BSA 
the canonical chaperone-interaction signature is observed (Fig. 1g 
and Extended Data Fig. 3d–j), owing to the weak molecular chaper-
one function of BSA17. Taken together, these experiments using six 
chaperones and two control proteins revealed that there is a canonical 
chaperone interaction with α-synuclein at the N terminus and around 
Tyr39 that is transient in nature. Notably, it comprises the two segments 
of α-synuclein that are locally the most hydrophobic (Extended Data 
Fig. 3k, l), indicating an importance of hydrophobic residues for the 
interaction with chaperones.

To characterize the physiological role of chaperone–α-synuclein 
interactions, we determined the affinity of α-synuclein for HSC70ADP, 
SecB and Skp using bio-layer interferometry. α-Synuclein binds to each 
of these chaperones with affinities ranging from 1 to 2 µM (Extended 
Data Fig. 4 and Supplementary Table 1). The ∆N-α-synuclein variant, 
which lacks 10 N-terminal residues, shows a decrease in affinity of two 
orders of magnitude, validating that this segment is part of the inter-
action site. At the reported cellular concentrations of α-synuclein in 
neuronal synapses of approximately 50 µM combined with a concen-
tration of around 70 µM of the chaperones HSP70 and HSP9018, about 
90% of cellular α-synuclein can therefore be bound to chaperones.

We then analysed published data on the NMR intensity profiles of 
α-synuclein inside living mammalian cells, and found that these data 
feature the canonical chaperone-interaction signature9. Because this 

pattern has been suggested to arise from interactions with cellular 
membranes, we first characterized α-synuclein in soluble cellular 
extracts, which were devoid of membranes, from Escherichia coli cells 
or mammalian HEK293 and MDCK-II cells. Notably, in each case we 
observed the canonical chaperone-interaction pattern (Fig. 1h and 
Extended Data Fig. 5a–d), indicating that this pattern does not result 
from the interaction with membranes. Second, we characterized the 
interaction pattern of α-synuclein with lipid bilayer membranes in vitro. 
Titrating large unilamellar vesicles (LUVs) with α-synuclein in a 125:1 
lipid:protein ratio leads to a uniform decrease in the NMR signal for 
amino acid residues 1–90 of α-synuclein (Extended Data Fig. 6a), in 
agreement with previously published reports9,19. Adding 2–6 equiva-
lents of SecB to solutions containing α-synuclein and LUV restored 
the chaperone signature, whereas the reverse experiment—that is, 
the addition of LUVs to an existing SecB–α-synuclein complex—led 
to attenuation of the NMR signal for amino acid residues 1–90 of 
α-synuclein, indicating that LUVs and SecB mutually compete for bind-
ing to α-synuclein (Extended Data Fig. 6). Overall, the data suggest that 
α-synuclein is in an equilibrium between its free state, its membrane-
bound state and its chaperone-bound state, of which the last two states 
are mutually exclusive. The emerging hypothesis that, in mamma-
lian cells, α-synuclein is predominantly in contact with chaperones 
rather than with the lipid bilayer was supported by the experimental 
determination of the interactome of the N terminus of α-synuclein in 
mammalian cells using chemical cross-linking and mass spectrometry. 
The interactome consists of a large number of molecular chaperones 
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Fig. 1 | Molecular chaperones prevent aggregation through the interaction 
with the N terminus of α-synuclein. a, b, Thioflavin T (ThT) emission curves of 
300 µM α-synuclein in the presence or absence of chaperones (15 µM (a) or 
30 µM (b)). c, Thioflavin T emission curves of 100 µM α-synuclein in the 
presence of 5 µM HSP90β with and without the addition of 1 µM of drugs.  
a–c, Data are mean ± s.d. (n = 3). AU, arbitrary units. d, Overlay of two-
dimensional [15N, 1H]-NMR spectra of 250 µM [U-15N]-α-synuclein in the absence 
(grey) and presence (yellow) of 500 µM of SecB tetramer (n = 3, with similar 
results). e, Residue-resolved backbone amide NMR signal attenuation (Irel = I/I0) 
of α-synuclein upon addition of two equivalents (eq.) of SecB tetramer (yellow), 

Trigger Factor dimer (orange), Skp trimer (red) or SurA dimer (dark red).  
f, Overlay of two-dimensional [15N, 1H]-NMR spectra of [U-15N]-α-synuclein in the 
absence (grey) and presence (cyan) of two equivalents HSP90β dimer (n = 2, 
with similar results). g, h, Residue-resolved backbone amide NMR signal 
attenuation (Irel = I/I0) of α-synuclein upon addition of two equivalents of 
HSP90β dimer (cyan), HSC70ADP (light blue), and ubiquitin (dark blue) as well as 
E. coli cell extract (green), mammalian MDCK-II cell extract (blue) and 
mammalian HEK293 cell extract (green). e, g, h, Values that are less than 1.0 
indicate intermolecular interactions.
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that had abundances ranging between 30 and 75%, including several 
isoforms of HSP90 and six HSP70 isoforms (Fig. 2a; see Supplementary 
Information for details).

NMR spectroscopy in cells
Next, we carried out NMR experiments in cells to study the interaction 
between α-synuclein and chaperones inside living mammalian cells 
at atomic resolution. [U-15N]-α-Synuclein was delivered into HEK293 
cells at concentrations of 3–10 μM, yielding intensity patterns that are 

characteristic for mammalian cell lines9 (Fig. 2b, c), such as the canoni-
cal chaperone-interaction signature. Multiple molecular chaperones 
are present in the cell that have mutually overlapping functions and 
‘clientomes’20. To complement the in vitro chaperone analyses, we 
investigated two of the most abundant chaperones found in mammalian 
cells, HSC70 and HSP90β. When [U-15N]-α-synuclein was delivered into 
HEK293 cells with reduced HSC70 levels (Extended Data Fig. 7c, d), the 
NMR intensity profile resembled the one observed for untreated cells, 
suggesting that there is functional redundancy between HSC70 and 
other chaperones in these cells (Fig. 2d, e). Next, we treated HEK293 
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Fig. 2 | The interaction between α-synuclein and chaperones is dominant in 
living cells. a, Abundance ratios of proteins bound to ΔN-α-synuclein versus 
wild-type full-length α-synuclein determined by relative quantitative mass 
spectrometry (mean values, n = 2). b, Overlay of two-dimensional [15N, 1H]-NMR 
spectra of [U-15N]-α-synuclein in NMR buffer (black) and inside living HEK293 
cells (blue-green). Representative spectrum from n > 5. c, Residue-resolved 
backbone amide NMR signal attenuation (IHEK/Ibuffer) of α-synuclein in 

mammalian cells. d, NMR signal attenuation in treated cells, relative to 
untreated cells (I/IHEK). Different combinations of HSC70 depletion and HSP90 
inhibition were applied, as indicated. e, f, Overlay of two-dimensional [15N, 1H]-
NMR spectra of [U-15N]-α-synuclein in untreated HEK293 cells (black) and in 
HSC70-depleted HEK293 cells (green) (e) or in HSC70-depleted HEK293 cells 
after 24 h of HSP90 inhibition (green) (f). Representative data (d–f) for three 
technical replicates, with similar results.
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cells with the HSP90-inhibiting drugs, and found that the canonical 
chaperone-interaction motif showed increased intensities compared 
to untreated cells (Fig. 2d). This suggests that HSP90 chaperones physi-
cally and transiently interact with α-synuclein in cells, and that this 
interaction is lost upon drug treatment. Immunoprecipitation assays 
confirmed that this interaction is almost completely lost 24 h after treat-
ment (Extended Data Fig. 7e). Finally, we simultaneously inhibited both 
HSC70 and HSP90, and observed a moderate effect on the canonical 
chaperone-interaction motif 4 h after treatment, at which point a sub-
stantial fraction of HSP90 still remains bound to α-synuclein (Extended 
Data Fig. 7e). At this time point, a low but measurable amount of free 
intracellular α-synuclein was observed (Fig. 2d). At 24 h after treatment, 
a marked global reduction in the signal of amino acid residues 1–90 of 
α-synuclein was observed, which was essentially identical to the LUV 
interaction pattern and to the profile that has previously been reported 
in which α-synuclein was bound to bacterial membranes19,21 (Fig. 2d, f).  
The combined inhibition of the two types of chaperone (HSC70 
and HSP90) therefore leads to a transient membrane interaction of 
α-synuclein, which is absent in the basal state of cells. Furthermore, in 
these experiments, we observed the formation of stable high-molecu-
lar-mass aggregates that contained α-synuclein (Extended Data Fig. 7f). 
Overall, these in-cell NMR and in vitro experiments show that, in cells, 

α-synuclein transiently interacts with a pool of constitutively expressed 
chaperones and that this interaction predominates over the transient 
interaction of α-synuclein with lipid bilayer membranes. In cells such 
as neurons18,22, as well as in our experiments using HEK293 cells, the 
concentration of chaperones is substantially larger than the concentra-
tions of α-synuclein, highlighting the physiological relevance of these 
observations (Extended Data Fig. 7g, h).

Intracellular membrane localization
The interactions between α-synuclein and cellular membranes after 
inhibition of HSC70 and HSP90 may be a key mechanism for disease 
pathogenesis and we thus aimed to identify the membranous organelle 
that is involved using co-localization analyses. To this end, control 
cells and HEK293 cells depleted of HSC70 and treated with drugs for 
24 h were first stained with MitoTracker (which stains mitochondria), 
LysoTracker (which stains acidic vesicles such as lysosomes) or Alexa-
Fluor-labelled wheat germ agglutinin (which stains the plasma mem-
brane and endoplasmic reticulum) and subsequently immunostained 
with anti-α-synuclein antibodies. These experiments revealed a strong 
colocalization of α-synuclein with mitochondria after the chaperones 
were depleted (Fig. 3a–c). To further confirm this association, we 
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to green to better visualize the co-localization of mtBFP and α-synuclein. Scale 
bars, 10 µm. Experiments were performed twice, with similar results.
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carried out immunofluorescence analyses using antibodies that were 
specific to the mitochondrial marker CoxIV and α-synuclein (Fig. 3d). In 
a complementary experiment, we expressed the marker mitochondrial 
blue-fluorescent protein (mtBFP) in control and HSC70- and HSP90-
deficient HEK293 cells and stained α-synuclein with antibodies (Fig. 3e, 
f). Both approaches confirmed the localization of α-synuclein to mito-
chondria after HSC70 and HSP90 inhibition.

Effect of post-translational modifications
After establishing the canonical chaperone-interaction signature 
and validating its presence in living mammalian cells, we investigated 
the effect of chemical modifications on the α-synuclein–chaperone 
interaction. Using the chaperones HSP90β, HSC70ADP, SecB and Skp, 
we analysed the effects of N-terminal acetylation of α-synuclein, the 
predominant form in mammalian cells9,19. N-terminal acetylation does 
not interfere with the interaction between α-synuclein and chaperones 
(Fig. 4 and Extended Data Fig. 8a–g). By contrast, ∆N-α-synuclein has 
a greatly reduced interaction with all chaperones, in agreement with 
the bio-layer interferometry experiments, and showing a synergistic 
effect between the N terminus and the amino acid region around Tyr39 
(Fig. 4b–e). Cellular oxidative stress and an imbalance in reactive oxy-
gen species are known hallmarks of the onset of Parkinson’s disease, 
leading to the oxidative modification of α-synuclein2. Titrating of 
HSP90β, HSC70ADP, SecB or Skp with methionine-oxidized α-synuclein23 
showed that oxidation of Met1 and Met5 abolish the N-terminal chap-
erone interaction (Fig. 4 and Extended Data Fig. 9). Next, we explored 
the effects of phosphorylation on the interaction with chaperones, 
using in vitro tyrosine phosphorylation by different kinases5,24 (Fig. 4 
and Extended Data Fig. 9). Titration of SecB, Skp, HSP90β or HSC70ADP 
with either tetra-phosphorylated or Tyr39-mono-phosphorylated 
α-synuclein resulted in the elimination of the chaperone interaction, 
whereas Tyr125-Tyr133-Tyr136-tri-phosphorylated α-synuclein showed 

the chaperone-interaction pattern of unmodified α-synuclein (Fig. 4). 
Tyr39 phosphorylation therefore has a specific inhibitory effect on the 
interaction with chaperones, providing a direct rationale for in vivo 
studies that have shown that upregulation of Abelson kinase (c-Abl) 
correlates strongly with Tyr39 phosphorylation and disease progres-
sion in Parkinson’s disease5,25.

Conclusion
In summary, we have identified a functional mechanism for the regula-
tion of α-synuclein by chaperones in mammalian cells through tran-
sient binding (Extended Data Fig. 10). Molecular chaperones bind 
to α-synuclein through a canonical motif, by recognizing intrinsic  
biophysical features at the N terminus and around Tyr39. The interaction 
is abrogated after inhibition of two major chaperones, and results in 
transient interactions of α-synuclein with cellular membranes and relo-
calization of α-synuclein to mitochondria. Aggregates of α-synuclein, 
as well as mitochondria, have been identified as major components of 
Lewy bodies26,27. We propose a model in which α-synuclein is predomi-
nantly found in a transient chaperone-interacting state in healthy cells, 
indicating that chaperones are a master regulator of the cellular states 
of α-synuclein. The model also predicts that changes in the activity or 
cellular levels of chaperones or α-synuclein—or the modulation of their 
interaction—will disturb the homeostatic balance, eventually causing 
or promoting Parkinson’s disease. Notably, this model is in agreement 
with a multitude of reported experimental observations ( Supplemen-
tary Discussion), including studies that have shown that the ratio of 
α-synuclein to chaperone is deteriorated in familial parkinsonism and 
that oxidative stress can lead to an increase in the phosphorylation 
of Tyr39 of α-synuclein5,25, which interferes with chaperone binding. 
The model further shows how modulation of chaperone activity might 
prevent the formation of oligomeric α-synuclein, the aggregation of 
which leads to the disruption of the mitochondrial membrane28, and 
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also accounts for recent reports that impairment of mitochondria may 
constitute an important factor in Parkinson’s disease29–31.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Interaction between α-synuclein and bacterial 
chaperones. a–c, Overlay of two-dimensional [15N, 1H]-NMR spectra of 250 µM 
[U-15N]-α-synuclein in the absence (grey) and presence (orange, red or dark red) 
of 500 µM chaperones. The sequence-specific assignments for significantly 
affected resonances are indicated. d, Residue-resolved chemical-shift 
perturbations of α-synuclein caused by the addition of two equivalents of SecB 
tetramer (yellow), Trigger Factor dimer (orange), Skp trimer (red) or SurA 
dimer (dark red). Broken lines indicate a significance level of two s.d. from the 
mean. e, Temperature dependence of the α-synuclein interaction with either 

SecB (yellow) or Skp (red) monitored by residue-resolved intensity ratios 
(Irel = I/I0) of 13C-direct-detected two-dimensional [15N, 13C]-NMR spectra. The 
intensity ratios of two-dimensional [15N, 1H]-NMR spectra at 281 K (Fig. 1c) are 
shown as an outline (grey). f, g, Overlay of two-dimensional [13C, 15N]-NMR 
spectra of 500 µM [U-13C, 15N]-α-synuclein in the absence (grey) and presence of 
1 mM of SecB tetramer (f; yellow) or 1 mM of Skp trimer (g; red). Experiments 
were performed at 281 K and 310 K as indicated. The sequence-specific 
resonance assignment is shown. Experiments in a–c, f, g were done in 
duplicates, with similar results.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Chaperones Skp and Trigger Factor bind α-synuclein 
at their native client sites. a, Overlay of two-dimensional [15N, 1H]-NMR spectra 
of 250 µM [U-2H, 15N]-Skp in the absence (grey) and presence (red) of 750 µM 
α-synuclein. b, Residue-resolved NMR signal intensity ratios (Irel = I/I0) of Skp 
(250 µM) in the presence of three equivalents of α-synuclein measured at 310 K. 
The thin dashed lines indicate a significance level of one s.d. from the mean. 
The solid line represents an intensity ratio of 1. c, α-Synuclein induced intensity 
changes plotted on the Skp crystal structure (RCSB Protein Data Bank code 
(PDB) 1SG2)32 and previously reported effects upon binding of its native client 
OmpX10. A decrease in the signal intensity of more than one s.d. is highlighted in 
blue, whereas an increase in signal intensity is highlighted in red. d, Overlay of 
two-dimensional [15N, 1H]-NMR spectra of 250 µM [U-2H, 15N]-Skp in the absence 
(grey) and presence (blue) of 500 µM BSA. e, Residue-resolved NMR signal 
intensity ratios (Irel = I/I0) of Skp (250 µM) in the presence of two equivalents of 
BSA measured at 310 K. The solid line represents an intensity ratio of 1.  
f, Overlay of two-dimensional [15N, 1H]-NMR spectra of 250 µM [U-2H, 15N]-
TF(∆RBD), a monomeric Trigger Factor (TF) variant that lacks its ribosome-
binding and main dimerization domain (RBD), in the absence (grey) and 

presence (orange) of 750 µM α-synuclein. g, Residue-resolved NMR signal 
intensity ratios (Irel = I/I0) of 250 µM TF(∆RBD) in the presence of three 
equivalents of α-synuclein measured at 298 K. The thin broken lines indicate a 
significance level of one s.d. from the mean. The thick line represents an 
intensity quotient of 1. h, Residue-resolved combined chemical-shift 
differences of the amide moieties. The broken line indicates a significance level 
of two s.d. from the mean. i, Significant chemical-shift changes (green) and 
intensity decrease (blue) plotted on the Trigger Factor structure (PDB 1W26)33. 
Comparison with the published Trigger Factor interaction sites of PhoA 
(orange)34. j, Overlay of two-dimensional [15N, 1H]-NMR spectra of 250 µM  
[U-2H, 15N]-TF(∆RBD) in the absence (grey) and presence (blue) of 500 µM BSA. 
k, Residue-resolved NMR signal intensity ratios (Irel = I/I0) of TF(∆RBD) (250 µM) 
in the presence of two equivalents of BSA measured at 298 K. The solid line 
represents an intensity ratio of 1. Experiments with α-synuclein (a, f) were done 
as duplicates yielding similar results, whereas control experiments with BSA 
(d, j) were performed once.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Interaction between α-synuclein and mammalian 
proteins. a, Overlay of two-dimensional [15N, 1H]-NMR spectra of 25 µM [U-15N]-
α-synuclein in the absence (grey) and presence (light blue) of 50 µM inhibited 
HSP90β dimer. Measured in NMR buffer plus 5 mM MgCl2, 5 mM ATP, 1 µM 
radicicol and 1 µM geldanamycin. b, Overlay of two-dimensional [15N, 1H]-NMR 
spectra of 100 µM [U-15N]-α-synuclein in the absence (grey) and presence (light 
blue) of 200 µM HSC70. c, Overlay of two-dimensional [15N, 1H]-NMR spectra of 
100 µM [U-15N]-α-synuclein in the absence (grey) and presence (light blue) of 
200 µM HSC70ADP. Measured in NMR buffer plus 5 mM MgCl2 and 5 mM ADP.  
d, Overlay of two-dimensional [15N, 1H]-NMR spectra of 100 µM [U-15N]-α-
synuclein in the absence (grey) and presence (light blue) of 200 µM HSC70ATP. 
Measured in NMR buffer plus 5 mM MgCl2 and 5 mM ATP. e, Overlay of two-
dimensional [15N, 1H]-NMR spectra of 250 µM [U-15N]-α-synuclein in the absence 
(grey) and presence (blue) of 500 µM (33 mg ml−1) BSA. f, Overlay of two-
dimensional [15N, 1H]-NMR spectra of 250 µM [U-15N]-α-synuclein in the absence 
(grey) and presence (dark blue) of 500 µM of ubiquitin. g, Residue-resolved 
combined chemical-shift perturbations of amide moieties upon addition of 
HSP90β (cyan), inhibited HSP90β (light cyan), HSC70 (light blue), HSC70ADP 
(light blue), HSC70ATP (light blue), BSA (blue) and ubiquitin (dark blue). Broken 

lines indicate a significance level of two s.d. from the mean. h, Residue-resolved 
backbone amide NMR signal attenuation (Irel = I/I0) of α-synuclein caused by the 
addition of two equivalents of inhibited HSP90β (light cyan), HSC70 (light 
blue), HSC70ATP (light blue) and BSA (blue). i, Residue-resolved NMR signal 
attenuation (Irel = I/I0) of 100 µM [U-15N]-α-synuclein upon addition of increasing 
BSA concentrations (50–250 mg ml−1). j, Residue-resolved NMR signal 
attenuation (Irel = I/I0) of 50 µM [U-15N]-α-synuclein upon addition of increasing 
ubiquitin concentrations (25–125 mg ml−1). k, Local hydrophobicity of 
α-synuclein plotted against the amino acid sequence. ΔF are the free energies 
of transfer of the individual amino acids from an aqueous solution to its 
surface35. Hydrophobicity corresponds to negative ΔF values. An exponentially 
weighted seven-window average was applied to the raw data, with the edges 
contributing 50%. The red line indicates the average value of 1.5 s.d. from the 
mean, the chosen threshold for the identification of the most hydrophilic 
segments. l, Sequence-dependent DnaK score for α-synuclein derived from a 
computational DnaK prediction algorithm36. Regions of the primary sequence 
with scores less than −5 (red line) are predicted to bind DnaK, a bacterial 
homologue of HSC70. Experiments in a–f were done in duplicates with similar 
results.
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Extended Data Fig. 4 | Kinetic analysis of the interaction of the chaperones 
with α-synuclein variants. a–c, Kinetic analysis by bio-layer interferometry of 
biotinylated Skp (a), SecB (b) and HSC70ADP (c) to different α-synuclein variants 
(α-synuclein (top), acetyl-α-synuclein (middle) and ∆N-α-synuclein (bottom). 

Black lines represent least-square fits to the data. The residuals of the fits are 
shown below each set of bio-layer interferometry curves. Each individual 
kinetic experiment was run twice in triplicates with similar results.



Extended Data Fig. 5 | Interaction between α-synuclein and cellular 
extracts. a, Overlay of two-dimensional [15N, 1H]-NMR spectra of 50 µM [U-15N]-
α-synuclein in the absence (black) and presence (green) of 25 mg ml−1 of E. coli 
cell extract. b, Overlay of two-dimensional [15N, 1H]-NMR spectra of 50 µM [U-
15N]-α-synuclein in the absence (black) and presence of 50 mg ml−1 mammalian 
MDCK-II cell extract (blue-green). c, Overlay of two-dimensional [15N, 1H]-NMR 
spectra of 50 µM [U-15N]-α-synuclein in the absence (black) and presence 

(green) of 50 mg ml−1 mammalian HEK293 cell extract. d, Residue-resolved 
combined chemical-shift perturbations of the α-synuclein amide moieties in  
E. coli cell extract (green), mammalian MDCK-II cell extract (blue) and 
mammalian HEK293 cell extract (green), all relative to aqueous buffer. Broken 
lines indicate a significance level of two s.d. from the mean. Experiments in a–c 
were done in duplicates with similar results.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | LUVs and the chaperone SecB compete for α-synuclein 
binding. a, Residue-resolved backbone amide NMR signal attenuation 
(Irel = I/I0) of α-synuclein caused by the addition of 5 mg ml−1 LUVs (125:1 molar 
ratio of lipid:protein; dark yellow) and after further addition of 2 equivalents of 
SecB (yellow). b, Residue-resolved backbone amide NMR signal attenuation 
(Irel = I/I0) of α-synuclein caused by the addition of 15 mg ml−1 LUVs (375:1 molar 
ratio lipid:protein; dark yellow) and after further addition of 2 and 6 equivalents 
of SecB, respectively (yellow), measured at 298 K. c, Residue-resolved 
backbone amide NMR signal attenuation (Irel = I/I0) of α-synuclein caused by the 

addition of 2 equivalents of SecB (yellow) and increasing amounts of LUVs with 
the following ratios: 2.5 mg ml−1, 62.5:1; 4.0 mg ml−1, 100:1; 6.25 mg ml−1, 156:1; 
8.5 mg ml−1, 212.5:1. d, Schematic showing the conformational equilibrium of 
free α-synuclein, its chaperone-bound state and one possible conformation of 
its LUV-bound state (PDB 1XQ8)19. Notably, these observations are also in full 
agreement with related studies for HSP9012 and HSP2737. e, Dynamic light 
scattering (DLS) measurements of LUVs prepared from pig brain polar lipids. 
Two independent preparations are shown in blue and orange, respectively, with 
an average diameter of 110 nm.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Interaction of α-synuclein and chaperones in cells. 
a, Western blot analysis of the expression of α-synuclein fused to a C-terminal 
haemagglutinin (HA)-tag in HEK293 cells. The molecular mass marker and the 
band corresponding to α-synuclein–HA are indicated. With these samples, 
immunoprecipitation and subsequent mass-spectrometry analysis was 
performed (b and Fig. 2a). b, Intensity ratios of carboxy-terminally HA-tagged 
∆N-α-synuclein and α-synuclein immunoprecipitation determined by relative 
quantitative mass-spectrometry analysis. Experiments were performed as 
duplicates in HEK293 cells. Identification of at least five peptides per protein 
was required for quantification. Data are mean. The dotted line represents an 
intensity ratio of 1. Proteins that belong to specific groups are highlighted in 
colours. The values for α-synuclein (green) as well as tubulin β4 and tubulin α1B 
(orange arrows from left to right) are indicated by coloured arrows.  
c, Efficiency of HSC70 knockdown in HEK293 cells (constitutively expressing 
the T-Rex repressor) stably transfected with an inducible shRNA targeting 
HSC70 mRNA (shHSC70). The image shows a representative semiquantitative 
reverse-transcription (RT)–PCR of HSC70 mRNA in cells treated with 
doxycycline to induce shHSC70 and geldanamycin (Gel) and radicicol (Rad) for 
24 h (+). Cells transfected with a control shRNA targeting firefly luciferase 
(shLUC) as well as semiquantification of an unrelated chaperone (HSP40) were 
included as negative and loading controls. d, Semiquantification of HSC70 and 
HSP90 protein levels by western blot. HEK293 cells (constitutively expressing 
the T-Rex repressor) stably transfected with shHSC70 and shLUC were grown in 
normal (−) or doxycycline-containing (+) medium for HSC70 knockdown. The 
cells were subsequently treated with vehicle (−) or geldanamycin and radicicol 
for HSP90 inhibition. The constitutively expressed protein GAPDH was assayed 
as loading control. e, Efficiency of the combined treatment of geldanamycin 
and radicicol in disrupting the α-synuclein–HSP90 interaction. HEK293 cells 

were treated with geldanamycin and radicicol for 4 or 24 h and then 
electroporated with recombinant α-synuclein using the protocol for in-cell 
NMR experiments. Whole-cell lysates were collected and used in 
immunoprecipitation assays with anti-α-synuclein antibodies. The obtained 
precipitates were then resolved by SDS–PAGE and analysed by western blot 
using the indicated antibodies. In addition to HEK293 cells with normal levels 
of HSP90 (control cells), cells with reduced levels of HSP90 (shHSP90) were 
used to validate the HSP90 band. f, Inhibition of both HSP90 and HSC70 
promotes aggregation of α-synuclein. The image shows a representative 
semiquantitative western blot of HSC70-depleted HEK293 cells treated with 
geldanamycin and radicicol. After 24 h of treatment, the cells were subjected to 
electroporation with recombinant α-synuclein and 4 h after electroporation 
the cells were collected and analysed by western blot. HMW and 14 kDa refer to 
high-molecular weight and monomeric α-synuclein species, respectively.  
g, h, Quantification of intracellular levels of HSP90 and electroporated 
α-synuclein in HEK293 cells by parallel reaction monitoring mass 
spectrometry. A standard curve (contained in the yellow boxes) using 
increasing amounts of recombinant HSP90 (g) or α-synuclein (h) enables the 
relative quantification of the intracellular protein levels. As surrogates for 
intracellular protein levels, at least four tryptic peptides of HSP90 (g) or human 
α-synuclein (h) were quantified. Targeted peptides are shown at the top of each 
plot, and at least four transitions of the y-series of the product ions were 
monitored over the chromatographic separation of the peptides (different 
colours). The determined cellular concentrations of HSP90 and α-synuclein 
were 30 µM and 2.5 µM, respectively (see Supplementary Methods for details 
of this calculation). cps, counts per second. The original and uncropped gels of 
a, c–f can be found in Supplementary Fig. 1. Western blot and PCR experiments 
(a, c–f) were done in duplicates, with in similar results.
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Extended Data Fig. 8 | Sequence-specific NMR-resonance assignments of 
α-synuclein variants. a–c, Two-dimensional [15N, 1H]-NMR spectra of 500 µM 
[U-13C, 15N]-α-synuclein (grey), 450 µM [U-13C, 15N]-acetyl-α-synuclein (dark 
violet) and 100 µM [U-15N]-∆N-α-synuclein (dark blue). The sequence-specific 
resonance assignments for wild-type as well as acetylated α-synuclein obtained 
from three-dimensional triple resonance experiments and from chemical-shift 
mapping of ΔN-α-synuclein are indicated. d, e, Two-dimensional [13C, 15N]-NMR 
spectra of 500 µM [U-13C, 15N]-α-synuclein (grey) and 450 µM [U-13C, 15N]-acetyl-
α-synuclein (dark violet). The sequence-specific resonance assignments for 

wild-type and acetylated α-synuclein obtained from three-dimensional triple 
resonance experiments are indicated. f, Residue-resolved combined chemical-
shift perturbations of the amide moieties for acetyl-α-synuclein (dark violet) 
and ΔN-α-synuclein (dark blue) versus wild-type α-synuclein. g, Residue-
resolved combined chemical-shift difference of the carbonyl-amide moieties 
for acetyl-α-synuclein (dark violet) versus wild-type α-synuclein. [15N, 1H]-NMR 
spectra in a–c were measured five times and [13C, 15N]-NMR spectra (d, e) were 
measured in duplicates, all yielding similar results.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Sequence-specific NMR-resonance assignments of 
methionine-oxidized and tyrosine-phosphorylated α-synuclein variants. 
a–c, Two-dimensional [15N, 1H]-NMR spectra of 100 µM oxidized [U-15N]-α-
synuclein (light grey), 100 µM oxidized [U-15N]-acetyl-α-synuclein (violet) and 
100 µM oxidized [U-15N]-ΔN-α-synuclein (blue). The sequence-specific 
resonance assignments from chemical-shift mapping and published 
assignments of the oxidized state23 are indicated. Oxidized methionines are 
highlighted in red. d, Residue-resolved combined chemical-shift differences of 
the amide moieties for oxidized α-synuclein (light grey), oxidized acetyl-α-
synuclein (violet) and oxidized-ΔN-α-synuclein (blue) relative to their 
respective reduced states. Colours as in a–c. Arrows indicate the positions of 

the oxidized methionines. e–g, Two-dimensional [15N, 1H]-NMR spectra of 
50 µM [U-15N]-mono-phospho-α-synuclein (red-brown), 50 µM [U-15N]-tri-
phospho-α-synuclein (brown) and 50 µM [U-15N]-tetra-phospho-α-synuclein 
(dark brown). The sequence-specific resonance assignments based on 
published assignments for phosphorylated α-synuclein are indicated24. 
Phosphorylated residues are highlighted in cyan. h, Residue-resolved 
combined chemical-shift differences of the amide moieties for the 
phosphorylated α-synuclein variants relative to wild-type α-synuclein. Colours 
as in e–g. Arrows indicate the positions of the phosphorylated tyrosines. 
[15N, 1H]-NMR spectra of the different modified α-synuclein variants were 
measured several times (n = 4) yielding similar results.



Extended Data Fig. 10 | Mechanism of chaperone-controlled regulation of 
α-synuclein function, conformation and localization in mammalian cells. 
Cellular chaperones (yellow) interact with the N-terminal segment of 
α-synuclein (red), thus actively regulating its functional species by shifting 

conformational equilibria. Impairment of the natural α-synuclein–chaperone 
ratio or abrogation of the α-synuclein–chaperone interaction by post-
translational modifications can lead to the formation of pathological species, 
including the accumulation of α-synuclein at mitochondria.
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Cell line source(s) Flp-In™ 293 cells were purchased from Thermo Fisher Scientific (R75007),  HEK-293 were purchased from the American Type 
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Authentication The authenticity of the cells was provided by Thermo Fisher Scientific and the American Type Culture Collection upon 
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experiments.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cells were used.


	Regulation of α-synuclein by chaperones in mammalian cells

	NMR spectroscopy in cells

	Intracellular membrane localization

	Effect of post-translational modifications

	Conclusion

	Reporting summary


	Online content

	Fig. 1 Molecular chaperones prevent aggregation through the interaction with the N terminus of α-synuclein.
	Fig. 2 The interaction between α-synuclein and chaperones is dominant in living cells.
	Fig. 3 Co-localization of α-synuclein and cellular organelles assessed using immunofluorescence.
	Fig. 4 Effect of post-translational modifications on the chaperone–α-synuclein interaction.
	Extended Data Fig. 1 Interaction between α-synuclein and bacterial chaperones.
	Extended Data Fig. 2 Chaperones Skp and Trigger Factor bind α-synuclein at their native client sites.
	Extended Data Fig. 3 Interaction between α-synuclein and mammalian proteins.
	Extended Data Fig. 4 Kinetic analysis of the interaction of the chaperones with α-synuclein variants.
	Extended Data Fig. 5 Interaction between α-synuclein and cellular extracts.
	Extended Data Fig. 6 LUVs and the chaperone SecB compete for α-synuclein binding.
	Extended Data Fig. 7 Interaction of α-synuclein and chaperones in cells.
	Extended Data Fig. 8 Sequence-specific NMR-resonance assignments of α-synuclein variants.
	Extended Data Fig. 9 Sequence-specific NMR-resonance assignments of methionine-oxidized and tyrosine-phosphorylated α-synuclein variants.
	Extended Data Fig. 10 Mechanism of chaperone-controlled regulation of α-synuclein function, conformation and localization in mammalian cells.




