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ABSTRACT: Our understanding of eukaryotic protein folding in the endoplasmic reticu-
lum has increased enormously over the last 5 years. In this review, we summarize some of
the major research themes that have captivated researchers in this field during the last years
of the 20th century. We follow the path of a typical protein as it emerges from the ribosome
and enters the reticular environment. While many of these events are shared between
different polypeptide chains, we highlight some of the numerous differences between
proteins, between cell types, and between the chaperones utilized by different ER glycopro-
teins. Finally, we consider the likely advances in this field as the new century unfolds and
we address the prospect of a unified understanding of how protein folding, degradation, and
translation are coordinated within a cell.

I. PROTEIN TARGETING TO THE
ER

Protein folding within the ER of a cell
begins when the nascent polypeptide chain
enters the lumen. Some proteins, particu-
larly in yeast, can access the ER after they
have folded in the cytosol. This requires
posttranslational transport and is not con-
sidered further here (see Rapoport et al.,
1999, Paunola et al., 1998 and refs. therein).
More common in higher eukaryotic cells is
the co-translational pathway, in which a
growing polypeptide nascent chain is guided
into the ER through the translocon. It has
been known for about 30 years that the

special feature that marks out a protein for
insertion into the ER (rather than a place in
the cytosol or nucleus) is its N-terminal
signal peptide (Blobel and Sabatini, 1970)
(Blobel and Sabatini, 1971) (Brownlee et
al., 1972).

Since the early pioneering studies of
protein synthesis in pancreatic cells (Palade,
1975), some ingenious approaches have been
used to dissect the molecular nature of the
‘translocation apparatus’. The establishment
of in vitro translocation systems has made it
possible to reconstitute the process in a cell-
free system (Nicchitta and Blobel, 1990)
(Gorlich and Rapoport, 1993). It was shown
that proteins destined for the ER pass through
an aqueous pore that is composed of oligo-
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meric rings of a heterotrimeric Sec61p com-
plex: Sec61α, β,  and γ (Hanein et al., 1996).
Sec61α is the largest component of the com-
plex, spanning the membrane 10 times. The
use of photo-crosslinking in tandem with
modified mRNAs encoding cross-linkable
and prematurely truncated polypeptides has
shown that Sec61 is intimately associated
with the translocating polypeptide (Mothes
et al., 1994) (Kellaris et al., 1991) (High et
al., 1993). Diffusion studies have suggested
that the pore has a size of 40 to 60 Å
(Hamman et al., 1997).

The Sec61 complex requires other part-
ners to function efficiently. These include
the signal recognition particle (SRP) (Walter
and Blobel, 1982) and the TRAM (TRans-
locating Chain-Associating Membrane Pro-
tein) complex (Rapoport, 1992). In vitro
reconstitution experiments showed that SRP
is a large, 325-kDa cytosolic ribonucleopro-
tein complex of seven components: a 7SL
RNA species and six heterogeneous
polypeptide chains (SRP72, SRP68, SRP54,
SRP19, SRP14, and SRP9) (Walter and
Blobel, 1983). Of these polypeptides, the
54 kDa subunit of the SRP is engaged in
signal peptide recognition and docking to
an SRP receptor. The SRP receptor itself
consists of a 69-kDa α subunit and a 30-
kDa β subunit and resides in the ER mem-
brane. The SRP receptor (α and β) and the
54-kDa subunit of SRP are all GTPases that
harness GTP to effect the docking of ribo-
somes and the transfer of signal sequences
(Romisch et al., 1989) (Bacher et al., 1996)
(Bacher et al., 1999). TRAM helps order
the insertion process (Do et al., 1996) and
determines the rate at which nascent chains
are exposed to the lumen (Hegde et al.,
1998c) as well as their topology (Hegde et
al., 1998b).

The translocon can be viewed as a highly
complex yet flexible machine that ‘breathes’
as it cycles between engaged and disen-
gaged states (for review see Johnson and

van Waes, 1999). In the early 1990s, ER
lumenal proteins, in addition to cytosolic
factors, were also shown to be essential for
the completion of protein translocation
(Nicchitta and Blobel, 1993). The opening
and closing of the pore is tightly regulated:
the lumenal side is sealed by BiP before the
cytosolic side opens (Liao et al., 1997)
(Hamman et al., 1998). This is not the last
time that we will encounter BiP, a soluble
ER resident protein of the hsp70 family.

II. PROTEIN TOPOLOGY WITHIN
THE ER MEMBRANE

Great strides have been made in under-
standing how the translocon can handle both
polytopic membrane proteins and soluble
lumenal proteins. Polytopic membrane pro-
teins can sample the lipid environment that
surrounds the translocon’s aqueous pore,
prior to arriving at the most favorable topol-
ogy within the membrane (Mothes et al.,
1997). TRAM cooperates with Sec61p to
help partitioning at the interface between
aqueous and lipid environments within the
channel (Heinrich et al., 2000).

We can distinguish a major difference
in the folding process between soluble and
membrane spanning ER proteins. The in-
trinsic differences in hydrophobicity and
physical location play an important role in
the protein’s final form. The constraints
placed on multimembrane spanning proteins
mean that a great deal of the ‘folding’ is
predetermined by the location of hydropho-
bic stretches in the primary sequence. Once
the polypeptide has finished interacting with
the translocon, its type I or type II orienta-
tion has usually been established. Only if
there are substantial exposed loops on the
lumenal or cytosolic sides would one ex-
pect chaperones to be needed in the folding
process.
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However, it is interesting to note that
the orientation of membrane spanning ER
proteins is not always determined by se-
quence alone. For example, the prion pro-
tein (PrP) can be entirely translocated
(secPrP) or it can exist as a single pass
protein with either a cytoplasmic (CtmPrP) or
lumenal (NtmPrP) facing aspect (Yost et al.,
1990). The topological form taken by this
remarkable protein is therefore not intrinsic
to its primary sequence, and is partly depen-
dent on trans-acting factors at the ER (Hegde
et al., 1998b). The orientation of this pro-
tein has important biological consequences,
because mice expressing the CtmPrP form of
the prion protein show significant symp-
toms of neurodegenerative disease (Hegde
et al., 1998a).

A second curious example is the
heterodimeric TAP transporter. TAP is an
ABC protein composed of TAP1 and TAP2
subunits that come together as a pore to
supply the ER with antigenic peptides for
binding to MHC class I molecules (Uebel
and Tampe, 1999). Truncation and glyco-
sylation studies have shown that the orien-
tation of the TAP1 subunit is able to change
posttranslationally unless it is stabilized by
the expression of the TAP2 subunit (Vos et
al., 2000). In a broad sense, TAP2 is acting
as a chaperone for its partner, TAP1, al-
though the biochemical details of how this
occurs are not yet understood.

A third interesting case of how co-trans-
lational insertion of a protein does not abso-
lutely determine its final topology is the
aquaporin water channel, AQP1. This pro-
tein initially forms a structure that spans the
membrane four times at the ER membrane
after translocation. However, before AQP1
reaches its destination at the plasma mem-
brane, it is converted to a protein that spans
the membrane 6 times (Lu et al., 2000).
Unlike AQP1, AQP4 (a water channel 70%
identical to AQP1) is always present in the
six TM form. It appears that two small re-

gions at the N-terminus of the second TM
region and at the C-terminus of the third
TM stretch of AQP4 are sufficient to con-
vert AQP1 into the six-pass form as the
protein folds and becomes compact (Foster
et al., 2000).

Fourth and finally, we draw attention to
the cystic fibrosis transmembrane conduc-
tance regulator (CFTR), a protein renowned
for its inefficiency in reaching the plasma
membrane (see (Kleizen et al., 2000) for
review). Up to 60% of wild-type CFTR never
gets to see the cell surface. CFTR, like the
TAP transporter, is an ABC glycoprotein.
CFTR possesses a large cytoplasmic loop
incorporating a nucleotide binding domain
(NBD) and a regulatory domain (R) essen-
tial for its function. Of the 12 putative mem-
brane-spanning segments, 8 contain charged
residues and in TM segment 6 two arginines
and one lysine lie within 14 residues of each
other (Chang et al., 1994). The charged resi-
dues of TM6 are essential for chloride chan-
nel function, but the price that the protein
has to pay is instability after insertion into
the ER membrane. Recent work has shown
that TM6 is stabilized in the membrane by
the ribosome/translocon and by the ensuing
synthesis of the cytosolic NBD and R do-
mains (Tector and Hartl, 1999).

We should also note that the hydropho-
bic or polar nature of the amino acids within
a polypeptide chain can be important in
determining how a stretch becomes inserted
into the ER membrane. Considerable ad-
vances are being made in our understanding
of these ‘rules’ (Braun and von Heijne, 1999;
Wolin and Kaback, 1999). For example,
polar-aromatic residues (Trp and Tyr) pref-
erentially target regions near lipid carbonyl
groups, whereas positively charged residues
prefer to extend into the territory surround-
ing lipid phosphate groups. Nevertheless,
the examples in this section demonstrate
that co-translational insertion of proteins into
the ER membrane is not yet easily predict-
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able, does not always follow the same path-
way, and can depend on a number of cis and
trans acting factors. Folding of both ER
lumenal and cytosolic glycoprotein domains
must be coordinated in multimembrane span-
ning proteins.

III. THE FOLDING
ENVIRONMENT WITHIN THE ER

Once a new protein has reached the ER
lumen, it finds that the environment is very
different from the cytosol on the other side
of the membrane. As well as being packed
with chaperones, the ER has an oxidizing
environment that favors the formation of
disulfide bonds between two cysteine resi-
dues. Disulfide bonds are particularly promi-
nent among proteins of the secretory path-
way, because they convey covalent stability
and protection for proteins that may have to
operate in a harsh environment, perhaps in
the lysosome or at the plasma membrane.

The ER lumen contains a greater pro-
portion of oxidised glutathione (GSSG) to
reduced glutathione (GSH), unlike the cyto-
sol. It has been estimated that the ratio
changes from between 30-100 GSH: 1 GSSG
in the cytosol to 3 GSH: 1 GSSG in the ER
(Hwang et al., 1992). Reduced glutathione
is a tri-peptide composed of the amino acids
γ-Glu-CysH-Gly and is involved in a num-
ber of essential biosynthetic and metabolic
pathways (Meister and Anderson, 1983)
(Ziegler, 1985). Because of its ability to
switch between oxidized and reduced states,
glutathione was an ideal candidate for the
primary redox buffer of the ER. In such a
scenario, oxidized GSSG would donate its
disulfide bonds to newly synthesized pro-
teins, allowing them to become oxidized
while GSSG was reduced to GSH. Reduced
GSH would then be exported from the ER
by a putative glutathione transporter, with

oxidized GSSG traveling in the opposite
direction.

This conventional wisdom has now been
challenged by the discovery of Ero1p in yeast
(Frand and Kaiser, 1998) (Pollard et al., 1998)
and two homologous proteins, Ero1-Lα and
β, in higher eukaryotes (Cabibbo et al., 2000)
(Pagani et al., 2000). Ero1p was found by
screening yeast for sensitivity to the reducing
agent DTT. Temperature-sensitive ero1-1
mutant yeast fail to fold the disulfide-contain-
ing protein carboxypeptidase Y (CPY) prop-
erly. CPY is retained in the ER in ero1-1 yeast
and does not form disulfide bonds, a fault that
can be overcome by adding exogenous oxi-
dants such as diamide (Frand and Kaiser,
1998). The folding and secretion of the
nondisulfide bonded ER protein invertase was
unaffected by an ero1 mutation (Pollard et al.,
1998). It has since been demonstrated that
Ero1p supplies disulfide bonds not to the tar-
get protein directly, but via PDI and at least
one other PDI homolog in yeast, Mpd2p (Frand
and Kaiser, 1999). The majority of PDI is kept
oxidized by Ero1p, whereas in the ero1-1 mu-
tant, the bulk of PDI is reduced. Two cysteine
containing regions of the protein appear to be
essential to the function of Ero1p: a CXXXXC
region at the N terminus and the CXXCXXC
motif situated towards the C terminus (Frand
and Kaiser, 2000).

Recent work has shown that Ero1p is an
FAD-dependent oxidase (Tu et al., 2000).
Although the CXXCXXC sequence re-
sembles that of a Fe-S cluster, there is no
evidence as yet for metal binding in Ero1p.
In the human Ero1-Lα protein, we have
shown that the CXXCXXC motif is respon-
sible for structural integrity and determines
the final folded state of the protein as well
as its half-life (Benham et al., 2000). No
cysteine mutations in the CXXCXXC motif
completely abolish PDI binding, and it ap-
pears that binding to PDI involves multiple
determinants within human Ero1-Lα (our
unpublished observations). A cartoon of the



437

F
IG

U
R

E
 1

. 
P

D
I 

ox
id

iz
es

 n
ew

ly
 s

yn
th

es
iz

ed
 p

ro
te

in
s 

in
 t

he
 E

nd
op

la
sm

ic
 R

et
ic

ul
um

. 
W

ith
in

 t
he

 E
R

, 
th

e 
E

ro
 p

ro
te

in
ox

id
iz

es
 P

D
I a

nd
 p

ro
vi

de
s 

di
su

lfi
de

 b
on

ds
. P

D
I t

he
n 

ox
id

iz
es

 d
is

ul
fid

e 
co

nt
ai

ni
ng

 s
ub

st
ra

te
 p

ro
te

in
s,

 e
ns

ur
in

g 
th

at
 th

ey
ha

ve
 th

e 
co

rr
ec

t s
tr

uc
tu

re
. M

ea
nw

hi
le

, e
le

ct
ro

ns
 a

re
 p

ro
ba

bl
y 

tr
an

sf
er

re
d 

to
 a

n 
el

ec
tr

on
 a

cc
ep

to
r 

an
d 

po
ss

ib
ly

 to
 th

e
m

ito
ch

on
dr

ia
.



438

proposed interaction of PDI with Ero1p is
depicted in Figure 1.

Both the human Ero1-Lα and Ero1-Lβ
proteins can partly complement the yeast
ero1-1 defective strain (Cabibbo et al., 2000)
(Pagani et al., 2000). Nevertheless, it should
also be noted that the yeast Ero1p has a
much longer C-terminal tail than human
Ero1-Lα (by around 140 amino acids). With
the presence of many different PDI like
proteins in yeast and in mammals, it is by no
means certain that the yeast and human pro-
teins are performing precisely the same func-
tion. Ero1-Lα and Ero1-Lβ are 65% identi-
cal to each other, but unlike Ero1-Lα,
Ero1-Lβ is expressed during ER stress re-
sponses (Pagani et al., 2000). Ero1-Lβ is
also more heavily glycosylated than Ero1-
Lα, with five N-linked glycans as opposed
to two. One notable difference in an other-
wise highly homologous C-terminal region
is the CXXCXXC sequence. This is
CVGCFKC in Ero1-Lα and CVGCDKC in
Ero1-Lβ (compared with CVQCDRC in
S. cerevisiae). The consequence of this
change in charge is still to be discovered.
The two human proteins also display in-
triguing tissue-specific differences; Ero1-
Lα mRNA is expressed predominantly in
the esophagus, whereas Ero1-Lβ transcripts
are far more prominent in the stomach and
duodenum (Pagani et al., 2000). Again, the
significance of this observation, and the
reason we need at least two similar Ero
proteins is not known.

The ‘new dogma’ has it that glutathione
is not needed for the introduction of disul-
fide bonds into ER proteins and may even
be acting, in its reduced form, to prevent
hyperoxidation in the ER (Cuozzo and Kai-
ser, 1999). However, the story is not yet
complete, and there are many avenues still
to explore in this burgeoning area. One is-
sue of interest is the role of flavin-contain-
ing monooxygenases (FMOs). FMOs pur-
sue the task of oxidizing thiols, including

glutathione, in a reaction that requires O2

and NADPH. In yeast, FMO has been local-
ized to the cytoplasmic side of the ER mem-
brane, and there is some evidence that it is
required for correct folding of disulfide con-
taining ER proteins (Suh et al., 1999). De-
letion of the enzyme alters the level of glu-
tathione in the ER and sensitises yeast to
reducing agents. FMO gene expression is
induced by the unfolded protein response
(Suh and Robertus, 2000). However, in man
there are at least 5 FMO related genes that
are thought to be primarily involved in the
detoxification of xenobiotic substances
(Ziegler, 1990). Most show limited tissue
distribution, being confined to the liver, al-
though FMO2 shows strong expression in
the lung. The extent to which this enzyme
family services the oxidative needs of the
ER in higher eukaryotes awaits discovery.

IV. THE PROTEIN DISULFIDE
ISOMERASE FAMILY

Our typical disulfide containing ER gly-
coprotein has now encountered the oxidised
milieu of the lumen and requires disulfide
bonds. The PDI proteins help to provide
them.

The PDI proteins have a rich and varied
history and have been associated with a
large range of functions (Freedman et al.,
1984) (Freedman et al., 1994). PDI belongs
to the thioredoxin superfamily and has a
molecular weight of around 55 kDa. The
protein has a characteristic domain struc-
ture termed abb′′′′′a′′′′′c. NMR studies have
verified that a and a′′′′′ have a redox-active
thioredoxin fold, whereas b and b′′′′′ have an
inactive thioredoxin fold (Kemmink et al.,
1997). The redox-active site has the con-
served sequence CGHC, whereas the C-ter-
minal c domain is highly acidic (see Ferrari
and Soling, 1999 for review).
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In 1993, PDI was convincingly shown
to catalyze the disulfide bond rearrange-
ment of misfolded BPTI molecules in vitro
(Weissman and Kim, 1993). The unscram-
bling and refolding activities of PDI have
been investigated extensively in vitro, al-
though it is uncertain whether these condi-
tions can adequately represent the condi-
tions encountered in the ER (e.g. Yao et al.,
1997, van den Berg et al., 1999). Some
persuasive work in yeast has shown that the
essential function of PDI is its ability to
unscramble non-native disulfide bonds in
ER proteins, rather than to oxidize new pro-
teins directly (Laboissiere et al., 1995). In-
deed, yeast PDI with a CGHS active site
instead of a CGHC active site can comple-
ment PDI-deficient yeast. The CGHS ver-
sion of PDI is crippled as an oxidative en-
zyme, but can still perform disulfide bond
isomerization. Similarly, mutation of the
yeast PDI a and a′′′′′ active site CGHC resi-
dues to SGAS supports normal growth, but
the rate of folding of CPY is compromised
(Holst et al., 1997).

The molecular mechanism of disulfide
bond formation and isomerization by PDI is
not understood in detail. One strategy that
may help is the use of small molecular weight
mimics of PDI, such as the dithiol BMC
(Woycechowsky et al., 1999). BMC can
catalyze the rearrangement of scrambled
disulfide bonds in RNase A in vitro and can
increase the efficiency of acid phosphatase
protein folding in yeast. Acid phosphatase
contains eight disulfide bonds that are re-
quired for its proper folding. Another inter-
esting approach is the use of disulfide-bond
containing fluorescence quenched peptide
libraries (Spetzler et al., 1998) (Westphal et
al., 1998).

PDI has also been ascribed a role in the
binding of misfolded proteins. It has been
suggested that it may target off-pathway
proteins for degradation (see Gilbert, 1998
for review). The role of PDI in degradation

has also been investigated primarily in yeast,
where the protein is glycosylated, unlike the
mammalian form (Gillece et al., 1999). In
yeast, a different company of homologues
joins PDI, including Eug1p, Mpd1p, Mpd2p,
and the poorly characterized ORF YIL005w.
We do not yet know what relationship these
proteins have to the PDI-like proteins in the
mammalian ER.

Recently, it was demonstrated clearly,
for the first time, that PDI and its homolog
ERp57 can directly introduce disulfide bonds
into newly synthesized Semliki Forest Vi-
rus glycoproteins, albeit with slightly dif-
ferent specificities (Molinari and Helenius,
1999). This evidence, taken together with
the experiments described in the previous
section, establishes the PDI proteins as pri-
mary donors of disulfide bonds into ER
proteins. A considerable amount of work is
still required before we have a clearer pic-
ture of how different PDI proteins in differ-
ent organisms organize their multitasking
activities so well.

PDI has a general peptide binding abil-
ity that may be of interest in antigen presen-
tation and drug delivery strategies. Cross-
linking experiments have shown that PDI is
a major receptor for peptides introduced
into the ER via the TAP transporter
(Lammert et al., 1997) (Spee and Neefjes,
1997). The b′′′′′ domain of PDI is the mini-
mum requirement for high-affinity peptide
binding, whereas larger, misfolded proteins
require contributions from all the domains
in order to interact efficiently (Klappa et al.,
1998a). Mutations in the a′′′′′ domain can also
influence peptide binding, probably through
indirect conformational effects (Klappa et
al., 2000).

As we alluded to above, PDI homo-
logues abound in the ER of both yeast and
mammalian cells. An interesting example is
the pancreas-specific PDI protein, PDIp,
which is co-expressed along with PDI in
acinar cells. Like the yeast PDI, PDIp is
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also glycosylated, but it lacks the acidic c
domain (Desilva et al., 1997). Cross-linking
experiments indicate that PDIp may interact
with misfolded proteins but not native pro-
teins, possibly through interaction with ty-
rosine and tryptophan residues (Klappa et
al., 1998b) (Ruddock et al., 2000). It will be
interesting to see how PDI and PDIp coop-
erate in a cell type that is devoted to secre-
tion.

ERp57, also known as ER60, is a PDI
family member that also lacks a c domain.
ERp57 has had more identities than a se-
cret agent since its discovery. It has been
described variously as a phospholipase, a
cysteine protease (Urade and Kito, 1992),
a carnitine palmitoyltransferase isoenzyme
(Murthy and Pande, 1994), and finally a
thiol-dependent reductase (Hirano et al.,
1995). ERp57 is now thought to be inti-
mately involved in the early stages of gly-
coprotein folding. It interacts in a complex
with the ER lectins calnexin and calreticulin
(Oliver et al., 1999), probably to introduce
disulfide bonds into nascent glycoproteins
(Oliver et al., 1997) (Molinari and Helenius,
2000). ERp57 also shot to fame with a
flurry of papers demonstrating that it was
a component of the MHC class I antigen
loading complex (Morrice and Powis, 1998)
(Hughes and Cresswell, 1998) (Lindquist
et al., 1998).

The final mammalian PDI family mem-
ber that we shall consider is ERp72
(Mazzarella et al., 1990). ERp72 is abun-
dant and widely expressed, and like PDI is
induced by ER stress. The domain organi-
zation of ERp72 is somewhat different from
that of PDI. The protein has a caoabb′′′′′a′′′′′
structure with three rather than two putative
active thioredoxin domains. The redox ac-
tivity of this protein has not been demon-
strated directly, although it has been found
in complexes with immature (and misfolded)
thyroglobulin (Kuznetsov et al., 1997) and
apolipoprotein B (Linnik and Herscovitz,

1998). ERp72 may also have peptide bind-
ing properties (Spee et al., 1999).

V. PPIases

Peptidyl-prolyl cis-trans isomerases
(PPIases) are a broad family of proteins
that catalyze the isomerization of the pep-
tide bond formed between any amino acid
and the imino acid proline in a polypeptide
chain. Many early in vitro studies showed
that the slow refolding of a proportion of a
purified protein population was due to the
slow isomerization of the Xaa-Pro bond
(Garel and Baldwin, 1973) (Brandts et al.,
1975). A number of proteins have since
been isolated that can catalyze the rapid
isomerization of the Xaa-Pro bond in vitro.
These PPIases are expressed in prokary-
otes and eukaryotes and are found within
the cytoplasm and various organelles, in-
cluding the endoplasmic reticulum. Despite
evidence from in vitro studies, there are
few convincing examples that PPIases are
required for high fidelity protein folding in
the ER. This is partly to do with the fact
that these proteins are involved in other
functions, such as T cell signaling (Liu et
al., 1991), mitosis (Lu et al., 1996), and
protein biosynthesis (Stoller et al., 1995).
Furthermore, inhibitors of PPIases, such as
cyclosporin A and FK506, can have non-
specific effects.

One example where proline isomeriza-
tion may be involved is the folding of the
collagen protein in the ER (see the follow-
ing section on substrate specific chaperones)
(Beck and Brodsky, 1998). Collagen is un-
usual in that it contains many modified,
hydroxylated proline residues. Triple helix
formation of the protein is limited by pro-
line isomerization, and maturation of the
protein is impeded by treatment with
cyclosporin (Steinmann et al., 1991).
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A compelling example of a dedicated
ER PPIase is the ninaA gene, a cyclophilin
homolog. NinaA is an integral ER mem-
brane protein, discovered in Drosophila (and
also present in man), that is solely expressed
in the photoreceptor cells (R1 to R6) of the
eye. Mutant flies lacking NinaA have re-
duced levels of rhodopsins Rh1 and Rh2,
but not of other rhodopsins. Rh1 expression
is reestablished when the NinaA protein is
expressed, but it should be noted that a di-
rect demonstration of PPIase activity of
NinaA on Rh1 has not been performed
(Stamnes et al., 1991).

VI. GLYCOSYLATION

An important determinant of the rate at
which a protein folds is the addition of sugar
residues to the polypeptide chain (Kornfeld
and Kornfeld, 1985) (Hirschberg and Snider,
1987). The majority of antennary saccha-
rides displayed by proteins are either
N-linked (Asn residues) or O-linked (Ser or
Thr residues) to amide or hydroxyl groups.
Whereas N-linked glycosylation occurs co-
translationally in tandem with protein syn-
thesis, O-linked glycosylation does not oc-
cur until the protein reaches the Golgi and
has already passed the ER quality control
apparatus (Jentoft, 1990). Despite many
years of effort, it is sobering to note that
whether a potential N-linked glycosylation
site is used or left empty cannot be easily
predicted from the primary amino acid se-
quence.

The addition of sugar residues is inti-
mately connected with the folding process
and is closely monitored by the quality con-
trol apparatus (See Parodi, 2000a; Parodi,
2000b for review). The direct role that
N-linked sugars play in protein folding has
been investigated for many proteins using
mutant molecules, drugs that prevent

glycosylation such as tunicamycin, and cells
that are deficient in various components of
the glycosylation pathway. In the case of
the IgE receptor, all seven of its potential
N-linked glycosylation sites are occupied,
and mutation of each of these results in
misfolding and ER retention, as does treat-
ment with tunicamycin (Letourneur et al.,
1995). Experiments performed with murine
acid sphingomyelinase (ASM), a lysosomal
enzyme with six potential glycans, also sug-
gest that proper glycosylation is required
for folding. An ASM mutant lacking sugars
at N-518 misfolds and is retained in the ER,
whereas mutations at other potential sites
reduce the stability of the enzyme in the low
pH environment of the lysosome (Newrzella
and Stoffel, 1996). Other work has exam-
ined the folding of human thyrotropin re-
ceptor (TSHR), which plays a role in Grave’s
disease. The folding and maturation of
TSHR was examined in mutant CHO cell
lines that yielded altered oligosaccharides.
The authors concluded that mannose rich
glycoproteins, as well as nonglycosylated
TSHR, folded inefficiently in the ER
(Nagayama et al., 1998).

Although there is a large body of evi-
dence suggesting that glycans are crucial to
protein folding, the effects are hard to pre-
dict, and it is difficult to distinguish be-
tween the absolute role of the glycan in
folding and the role of the glycan in quality
control/chaperone binding (see below).

The process of N-linked glycosylation
actually begins in the cytosol with the con-
struction of a core oligosaccharide,
GlcNAc2Man9Glc3, which associates with
the ER membrane via a dolichol lipid
(Abeijon and Hirschberg, 1992). After trans-
fer into the lumen, oligosaccharides are at-
tached to an Asn amino acid by the oli-
gosaccharide transferase complex, an
8-subunit enzyme. The oligosaccharides are
trimmed first by glucosidase I, which chops
off the most terminal glucose (Glc) unit,
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then by glucosidase II, which eliminates
the other two Glc subunits, leaving a
GlcNAc2Man9 stalk. Strangely, an ER en-
zyme called UDP-glc: glycoprotein:
glucosyltransferase (GT for short) can re-
verse this process and add back a glucose
residue from UDP-Glucose to the degluco-
sylated tree. Why should the cell bother
going to such lengths to add a complex
sugar tree only to prune it down and then
add back a glucose residue again? The rea-
son for this curious cycle was revealed in
some elegant experiments (Hammond and
Helenius, 1994b) (Hebert et al., 1995). These
experiments showed that partially folded
proteins were substrates for GT, and that
the cycle between monoglucosylated and
deglucosylated forms determines the asso-
ciation of calnexin and calreticulin, two
chaperones with lectin-like properties (see
below). GT recognizes two covalently linked
properties in the acceptor substrates: the
first N-acetylglucosamine together with ex-
posed protein domains in a denatured state
(Sousa and Parodi, 1995). However, a
misfolded conformation alone is insufficient
for in vivo glucosylation (Fernandez et al.,
1998).

Further studies using engineered RNase
B conformers with different degrees of dis-
order have confirmed that local structure in
the region of the N-linked glycan is impor-
tant in determining GT association. Small
conformational changes do not support
reglucosylation, whereas partly structured,
non-native proteins are effectively targeted
by GT (Trombetta and Helenius, 2000)
(Ritter and Helenius, 2000). Thus non-na-
tive structures ‘with promise’ can become
substrates for a potentially productive next
round of interaction with calnexin and
calreticulin. Although this cycle is very
compelling, it should also be noted that S.
cerevisae entirely lacks GT activity yet can
still fold its ER proteins well enough
(Fernandez et al., 1994). In S. pombe, GT is

stress induced, but is not a prerequisite for
normal cell growth (Fernandez et al., 1996).
Further investigation is required to deter-
mine why this should be.

Most attention has focused on the role
of N-linked sugars in ER protein folding,
but there are growing reports of other types
of sugar modification that may play a role in
protein structure and function (Vliegenthart
and Casset, 1998). One example is
C-mannosylation of tryptophan residues
within a WXXW motif. This modification
also utilizes dolichol phosphate as the sugar
donor (Doucey et al., 1998) and has thus far
been found in RNase 2 (Loffler et al., 1996),
IL-12, properdin, and other members of the
complement protein family (Hofsteenge et
al., 1999) (Hartmann and Hofsteenge, 2000).
C-mannosylation almost certainly occurs in
the ER, but its timing and consequences for
protein folding and activity are not known.

VII. CALNEXIN AND
CALRETICULIN

Our growing nascent chain is now ac-
quiring disulfide bonds and forming some
conformational structure. The glucose cycle
described above helps to mediate the inter-
actions of these young proteins with two
important lectin-like ER chaperones,
calnexin and calreticulin. Calnexin (formerly
known as p88 and IP90) is a calcium bind-
ing, type I membrane protein of the ER that
binds to partially glucosylated glycoproteins
(e.g., David et al., 1993). Calreticulin is
closely related to calnexin, but unlike its
cousin, calreticulin, is soluble in the ER and
is retained in the organelle by a C-terminal
retrieval sequence (see Michalak et al., 1999
for review). Calreticulin has both high- and
low-affinity Ca2+ binding sites and with a
Mr of 46 kDa, calreticulin is somewhat
smaller than the approx. 65-kDa calnexin.
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Attempts to crystallize these two proteins
have thus far been unsuccessful. A protein
homologous to calnexin, called calmegin, is
expressed only in the testis and has also
been shown to be a chaperone that binds
nascent chains. Calmegin is required for
fertility and spermatogenesis (Ikawa et al.,
1997).

Calreticulin has a crucial role to play as
a chaperone (Krause and Michalak, 1997),
as a regulator of Ca2+ in skeletal sarcoplas-
mic reticulum (Fliegel et al., 1989), in the
development of the heart and vascular sys-
tem (Mesaeli et al., 1999) (Rauch et al.,
2000) and in the immune system (Llewellyn
et al., 2000). Overexpression of calreticulin
can help induce apoptosis (Nakamura et al.,
2000). Calreticulin gene expression is also
regulated by calcium levels (see next sec-
tion) (Waser et al., 1997), and the confor-
mation of calreticulin is influenced by both
Ca2+ and Zn2+ (Corbett et al., 2000).

Initial studies showed that calnexin, then
called IP90, could associate with newly
synthesized T cell receptors and B cell re-
ceptors during their biosynthesis and was
likely to be an influential ER chaperone
(Hochstenbach et al., 1992). This idea was
expanded by seminal work from Ou et al.,
who demonstrated that calnexin can associ-
ate with a whole range of glycosylated fold-
ing intermediates in the cell, and that their
rate of release is related to the time taken for
the protein to fold (Ou et al., 1993). Subse-
quently, calnexin has been found associated
with many different ER glycoproteins, in-
cluding the MHC class I loading complex
(Jackson et al., 1994) (Vassilakos et al.,
1996) (Sadasivan et al., 1996) (Harris et al.,
1998) and transferrin (Wada et al., 1997).
Treatment of cells with castanospermine and
1-deoxynojirimycin (which inhibit glucosi-
dases I and II) prevents viral glycoproteins
from binding to calnexin and interferes with
the folding of viral glycoproteins (Hammond
et al., 1994).

Calnexin binding to invariant chain (Ii)
is also an interesting example of chaper-
one-substrate behavior. Ii is a homotrimeric
type II ER membrane protein that binds to
MHC class II molecules as a nonamer after
synthesis and escorts them from the ER to
lysosomal-like compartments (Busch et al.,
2000). In this acidic environment, Ii, which
protects the MHC class II peptide binding
groove, is degraded and antigenic peptides
are loaded with the assistance of another
two chaperones, DO and DM (Kropshofer
et al., 1999). Although Ii is glycosylated,
calnexin association is not strictly depen-
dent on the presence of glycans. Calnexin
binding does not seem to be required for Ii-
class II assembly but does appear to retain
Ii-class II in the ER long enough for the
complex to be correctly assembled
(Romagnoli and Germain, 1995). It would
be interesting to reassess the role of
calnexin in the maturation of Ii in light of
recent data acquired with ERp57. ERp57 is
commonly found together in complex with
calnexin and calreticulin, and the general
consensus is that these three proteins prob-
ably work with each other to assist the
folding of many ER glycoproteins (High et
al., 2000).

Although most researchers believe that
calnexin interacts exclusively with
glycosylated proteins, there is a body of
evidence that suggests that calnexin can also
associate with nonglycosylated proteins, and
that it can act as a chaperone in the absence
of the glucosylation cycle. For example, the
T cell Receptor (TCR) subunit CD3ε is not
glycosylated, but, in the absence of other
TCR chains, it can bind strongly to calnexin
(Rajagopalan et al., 1994). Studies using
purified calnexin in vitro have also chal-
lenged the view that calnexin solely recog-
nizes glucose residues. In these experiments,
calnexin inhibited the aggregation of pro-
tein substrates that lacked glycans in an
ATP-dependent fashion. Calnexin bound
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stably to unfolded proteins and enhanced
the rate of nonglycosylated protein folding
in partially reconstituted systems (Ihara et
al., 1999). Although the work of Ihara and
colleagues was a well-controlled study,
many researchers still doubt whether
calnexin will perform as a non-lectin-like
chaperone when confronted with glyco-
sylated ER proteins in vivo. Studies with the
vesicular stomatitis virus G protein (VSV-
G) strongly suggest that nonglycosylated
VSV-G interacts with calnexin in off-path-
way, misfolded, high-molecular-weight ag-
gregates, whereas productively folding
VSV-G requires the glycan to interact with
calnexin. The efficiency of VSV-G interac-
tions with calnexin depend on whether two
glycans or a solitary glycan are present (Can-
non et al., 1996).

Calnexin and calreticulin share many
substrates, but there are some differences in
the range of proteins to which they bind. To
some extent, calreticulin and calnexin are
interchangeable. This has been shown by
domain swapping experiments using soluble
forms of calnexin and membrane bound
forms of calreticulin. When calnexin is
soluble, it binds to normal calreticulin sub-
strates, whereas when calreticulin is mem-
brane bound the spectrum of newly synthe-
sized proteins with which it interacts
resemble those of calnexin. Although fur-
ther studies are required, it seems that the
membrane or lumenal location of calnexin
and calreticulin is important for its substrate
specificity (Danilczyk et al., 2000).

For some time, it was not understood
why some glycoproteins interacted with
calnexin and calreticulin early during fold-
ing, whereas others seemed to bind these
proteins much later. It is now evident that
calnexin and calreticulin binding is depen-
dent on the position of the glycans within
the polypeptide chain. ER proteins that dis-
play N-linked glycans within the first 50
residues (such as semliki forest virus (SFV)

protein p62) interact with calnexin and
calreticulin prior to their subsequent inter-
action with BiP. Conversely, proteins that
contain N-linked glycans further along the
chain (such as SFV protein E1) are targeted
by BiP first, before any interactions with
calnexin or calreticulin take place (Molinari
and Helenius, 2000). The presence of N-
linked glycans early in the chain helps to
promote binding of calnexin and calreticulin
rather than preventing BiP binding. Ex-
amples that are consistent with this hypoth-
esis include the “E1-like” VSV glycopro-
tein (Hammond and Helenius, 1994a), HIV
envelope protein gp160 (Earl et al., 1991)
(A. Land, D. Zonneveld and I.B., in prepa-
ration), and immunoglobulin heavy chain
(Haas and Wabl, 1983). “p62 like” BiP in-
dependent proteins include Influenza HA
(Braakman et al., 1991) and factor V
(Pittman et al., 1994). It will be interesting
to discover whether (and how) the
deglycosylation/reglucosylation cycle dis-
criminates between these different “E1-like”
and “p62-like” substrates.

VIII. BIP

BiP (also known as GRP 78, Ig heavy
chain binding protein and Kar2p in yeast) is
an abundant 72-kDa lumenal chaperone of
the hsp 70 family. We have already referred
to BiP’s role in sealing the translocon and
its involvement in the translocation process,
but the protein also has a long history as a
chaperone. It was BiP, along with PDI and
gp96 (GRP94), that were used to show that
the C-terminal KDEL sequence acted as a
retention signal for soluble ER proteins
(Munro and Pelham, 1987). It was soon
appreciated that BiP, and other so-called
‘glucose regulated proteins’, were
upregulated by the presence of unfolded
proteins in the ER (Kozutsumi et al., 1988).
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These seminal observations led to the un-
covering of the exquisitely controlled un-
folded protein response pathway, which is
discussed in detail later. BiP has a peptide
binding site that is filled by only seven amino
acid residues, a feature that allows it to
recognize and protect exposed sections of a
newly translated protein rather than prop-
erly folded chains (Flynn et al., 1991).

One of the first insights into BiPs chap-
erone function was its capacity for binding
to Immunoglobulin (Ig) heavy chains (Haas
and Wabl, 1983) (Munro and Pelham, 1986).
Immunoglobulin must form a disulfide
linked complex of two heavy chains and
two light chains if it is to function properly
as an antigen binding protein. Studies both
in vitro and in transfected cells using BiP
ATPase-deficient mutants have shown that
the presence of putative BiP binding se-
quences in Igs is insufficient to ensure bind-
ing to BiP. Rather, the stability of the pro-
tein and its rate of folding are the crucial
factors (Hellman et al., 1999). BiP dissoci-
ates from immunoglobulin heavy chains
when the antibody molecule is fully as-
sembled with its light chain components
(Hendershot, 1990). BiP binds not just to
the immunoglobulin heavy chain, but also
to the light chains, both before and during
assembly (Kaloff and Haas, 1995; Knittler
and Haas, 1992). BiP seems to cooperate
with the immunoglobulin light chain to en-
sure the accuracy of heavy chain folding. In
the absence of light chains, the addition of
ATP can result in the release of BiP from
the heavy chain. This is sufficient to allow
the heavy chain to fold. From these results,
it has been suggested that the light chain is
dispensable for the folding of the heavy
chain, but is normally required for the dis-
placement of BiP (Lee et al., 1999).

Although BiP has been studied most
extensively in immunoglobulin folding and
assembly, it is also found in association
with other ER lumenal proteins. One ex-

ample is lymphoma proprotein convertase
(LPC), a serine protease that is activated by
intramolecular cleavage in the ER (Creemers
et al., 2000). Cross-linking experiments re-
vealed that BiP interacts with glycosylated
LPC precursors and probably prevents ag-
gregate formation, albeit at the expense of
slower protein folding.

Recent work has also highlighted a role
for BiP in regulating the unfolded response.
BiP interacts with two important mediators
of this pathway, PERK and Ire1 (Bertolotti
et al., 2000). This article is discussed fur-
ther in the section on CHOP and PERK.

In yeast, BiP, as Kar2p, plays an impor-
tant part in the transfer of posttranslationally
folded prepro-α factor into the ER from the
cytosol. In this situation, Kar2p binds to
prepro-α factor as it enters the lumen and
acts as an energy-dependent ‘molecular
ratchet’ to prevent prepro-α factor slipping
back into the cytosol (Matlack et al., 1999).
During posttranslational protein entry into
the ER in yeast, Kar2p interacts in an ATP-
dependent fashion with a lumenal portion
of Sec63p (a component of the ‘posttransla-
tional’ translocon). This sequence of Sec63p
has homology to the DnaJ proteins of
E. coli and is essential for the correct posi-
tioning of BiP at the translocon (Corsi and
Schekman, 1997).

BiP function may be regulated by cal-
cium (Kassenbrock and Kelly, 1989) and
BiP has also been implicated in ER calcium
storage (Lievremont et al., 1997). Possible
roles for calcium in glycoprotein folding
are discussed below.

IX. CALCIUM

It is not surprising that with the presence
of abundant calcium binding chaperones in
the ER, calcium should turn out to be an
important regulator of the compartment’s
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function, and hence protein folding (Meldolesi
and Pozzan, 1998). The very many investi-
gations into the various roles of calcium are
beyond the scope of this review (for more
information see Corbett and Michalak, 2000).
However, it is important to draw attention to
the role of this cation in ER biology.

The ER (and the sarcoplasmic reticu-
lum in muscle), along with the mitochon-
dria, is the major internal calcium store,
much of it being associated with calcium
binding proteins. Calcium can trigger its
own release from the ER into the cytosol,
and this occurs through specific Ca2+ chan-
nels. Such channels include the ryanodine
receptor (RYR) (Wagenknecht and
Radermacher, 1997) and the inositol-1,4,5-
triphosphate receptor (InsP3R) families
(Mikoshiba, 1997), which can be triggered
to release Ca2+ from the ER into the cytosol
upon binding of Ins3P.

In the sarcoplasmic reticulum, calcium
is returned to the depot via sarcoplasmic
reticulum ATPases (SERCAs). These in-
clude SERCA 1, SERCA2a, and its isoform
SERCA2b (Lytton et al., 1992) (Toyofuku
et al., 1992). It has been reported recently
that SERCA2b is inhibited by the binding
of calnexin after phosphorylation at Ser 562
(Roderick et al., 2000). Ca2+ release after
Ins3P treatment results in dephosphoryla-
tion and the release of calnexin from
SERCA2b. Conversely, calreticulin targets
a glycan at N1036 on SERCA2b and has
been implicated in controlling the protein’s
conformation and function (John et al.,
1998). These findings suggest that calcium-
binding chaperones can regulate calcium
pumps and hence help adjust the concentra-
tion of calcium in the sarcoplasmic reticu-
lum. SERCA2b mRNA expression is also
upregulated by ER stress, suggesting that
the protein plays a role in the unfolded pro-
tein response. Interestingly, this upregulation
occurs in a Ca2+ independent manner
(Caspersen et al., 2000).

Studies of calcium in the ER have been
greatly facilitated by the use of specific in-
hibitors and cell permeable dyes. The fluo-
rescent dye Casade Blue changes in its
emission properties when bound to proteins
in different polar environments. Preliminary
work using this dye has shown that low Ca2+

(< 100 µM) can support interactions be-
tween PDI and calreticulin, whereas a high
Ca2+ concentration (> 400 µM) cannot. The
same authors’ claim that ERp57 interacts
with calreticulin in a manner that is partly
regulated by Ca2+ binding to calreticulin
(Corbett et al., 1999). The implication is
that calreticulin is a calcium sensor that
begins to function as a lectin and binds to
ERp57 when calcium stores are full. While
this work is quite interesting, the exact physi-
ological relevance of these observations still
has to be demonstrated.

Internal ER calcium stores have been
estimated to be between 10-3 and 10-4 M
(Meldolesi and Pozzan, 1998). It has been
difficult to accurately measure free (not pro-
tein bound) basal ER Ca2+ concentrations.
A recent study using chameleon calcium
indicators estimates that average free cal-
cium concentrations are around 500 µM in
the ER (Yu and Hinkle, 2000).

Calcium may also be important in regu-
lating the interaction between the ER and
mitochondria. It has been revealed by elec-
tron tomography that mitochondria and
subdomains of the ER come into close con-
tact with each other (Perkins et al., 1997).
Close apposition of the ER and mitochon-
dria is a requirement for mitochondrial up-
take of calcium (Pozzan et al., 1994). Using
a semi-in vitro system in combination with
confocal microscopy, it has now been dem-
onstrated that mitochondrial association to
the smooth ER is dependent on calcium
levels: a calcium concentration of > 1 µM
leads to association, whereas <100 nM cal-
cium encourages disassociation (Wang et
al., 2000). Direct phospholipid transfer be-
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tween the two organelles has also been dem-
onstrated (Achleitner et al., 1999). It may
be that ER: mitochondrial interactions can
provide the ER with a mechanism by which
to dispose of the excess electrons that are
generated during disulfide bond formation.
Excess electrons could be passed from an
electron acceptor in the ER membrane to
the respiratory chain in mitochondria. How-
ever, this idea currently remains in the realm
of speculation.

X. GP96/GRP94

Gp96 (also known as grp94 and
endoplasmin) is an hsp90 heat shock pro-
tein family member that is expressed in the
ER lumen (Nicchitta, 1998). Gp96/grp94
has quite an unusual double lifestyle for an
ER chaperone. As grp94, this protein be-
haves as a classic ER chaperone. It interacts
with immunoglobulin heavy chains, after
BiP has bound to immunoglobulin, to en-
sure that the protein is properly assembled
(Melnick et al., 1992; Melnick et al., 1994).
Grp94 is also induced by ER stress and
accumulates in the presence of unfolded
proteins (Kozutsumi et al., 1988). Those of
us who know the protein as gp96 will be
more familiar with its high-affinity peptide
binding properties (Li and Srivastava, 1993)
and its potential role as an accessory mol-
ecule in loading antigens onto MHC class I
molecules in the ER. Gp96 has a peptide
binding site located in a conserved region of
the protein between amino acids 624 and
630 (Linderoth et al., 2000). Studies have
now shown that cellular peptide-gp96 com-
plexes, probably derived from dying, in-
fected cells, are taken up by antigen-pre-
senting cells. These complexes are
recognized by the α2-macroglobulin recep-
tor (CD91), which is specifically expressed
on the surface of macrophage lineage cells

(Singh-Jasuja et al., 2000a) (Binder et al.,
2000). The gp96-bound peptides are then
represented on the surface of a dendritic cell
or macrophage. Thus, antigens generated
intracellularly by one cell are taken up ex-
ogenously by a second cell type and are
somehow targeted to the endogenous (MHC
class I) antigen presentation pathway (Suto
and Srivastava, 1995). At the same time,
gp96 and hsp70 both induce the maturation
of dendritic cells (Singh-Jasuja et al., 2000b).
A model is developing in which gp96 oper-
ates as a mobile peptide chaperone, protect-
ing intracellular peptides from hydrolysis
outside the cell and acting as a sensor for
necrotic cell death.

XI. SUBSTRATE SPECIFIC
CHAPERONES

Thus far we have described how all gly-
coproteins have certain requirements, such
as the need for an oxidizing environment,
the need for correct disulfide bonds, the
need for glycans, and the need for quality
control by chaperones to ensure that a prop-
erly folded molecule is made. However, very
many ER glycoproteins have specific needs
and may utilize specialized chaperones to
help them on their way out of the ER. There
are numerous examples in the eukaryotic
world, but in the following section we briefly
discuss four interesting examples.

A. Collagen, prolyl-4-
hydroxylase and Hsp47

The collagens are major components of
the extracellular matrix, being required,
among other things, for the protective and
flexible properties of the skin, tendons, and
blood vessels. Collagen has a number of
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highly unusual features. First, it has a very
high proportion of Pro and Gly residues.
Second, many Pro residues are hydroxy-
lated to form 4-hydroxyproline (Hyp), and
some lysine residues are also hydroxylated
to form 5-hydroxylysine (Hyl). The Hyl
residues are frequently glycosylated by the
addition of a glucose-galactose disaccha-
ride. Third, Gly-Pro-Hyp forms a common
structural repeating unit to enable the pro-
tein to form a helix (see Beck and Brodsky,
1998 for review).

These features eventually provide the
molecule with its elastic properties and ten-
sile strength, but they also give the ER a
headache when it comes to folding the
molecule correctly. The biosynthesis of
procollagen therefore goes through a num-
ber of stages before the protein can reach its
trimeric state. In the previous section on
PPIases, we described how collagen prob-
ably requires proline isomerization to fold
efficiently at an early stage of the folding
pathway (Steinmann et al., 1991). Another
step en route to trimerization is assisted by
prolyl-4-hydroxylase (a PDI containing pro-
tein) and depends on the initial formation of
a C terminal globular domain. After
trimerization, a triple helical domain is
formed between the individual strands, and
this step depends on the hydroxylation of
the numerous proline residues that are con-
tained within this region (John et al., 1993).
The zipped-up, triple helical molecule is
then transport competent, and can leave for
the Golgi where higher-order structures are
formed.

A feature unique to collagen is its inter-
action with the PDI enzyme complex, prolyl-
4-hydroxylase (Pihlajaniemi et al., 1987)
(Koivu et al., 1987). Most domains of PDI
are required for prolyl-4-hydroxylase com-
plex formation, but the acidic C terminal
domain is not (Koivunen et al., 1999). Col-
lagen is also special in that it interacts with a
small heat shock protein, Hsp47. Collagen is

the only known substrate for Hsp47 (Nagata,
1996). The precise role of Hsp47 in collagen
folding has been unclear, but recent data now
suggest that Hsp47 stabilizes the correctly
folded form of collagen prior to its export
from the ER (Tasab et al., 2000). Mice lack-
ing Hsp47 die before they reach 12 days and
show severe disturbances in their epithelia
and blood vessels. Fibroblasts cultured from
these animals express collagen that is highly
sensitive to protease digestion, again sug-
gesting that Hsp47 is required for the forma-
tion of a firm helical structure in native col-
lagen (Nagai et al., 2000).

B. MHC Class I, Tapasin, and
TAP

The MHC class I molecule and its loading
complex receives much attention because of
its pivotal role in antigen presentation
(Cresswell et al., 1999). Many of the folding
events that it passes through are no different
than the average glycoprotein, such as its in-
teraction with the ERp57/calnexin/calreticulin
complex (Farmery et al., 2000). However, the
class I molecule does have some features that
appear to be unique. For example, class I
associates with the TAP peptide transporter
and with a 48-kDa ER glycoprotein called
tapasin prior to peptide loading (Sadasivan et
al., 1996) (Ortmann et al., 1997). In the earlier
section on topology, we described how TAP2
could be acting as a chaperone for TAP1. TAP
and tapasin may also be loosely thought of as
MHC class I chaperones. One opinion is that
TAP and tapasin may help keep the class I
molecule in an open conformation until an
appropriate peptide has been loaded (Solheim
et al., 1997). The role of TAP, tapasin, and
other chaperones such as calnexin has been
aided by studies using HLA-A2 alleles with
point mutations. Molecules that fail to bind
TAP do not acquire peptides and are deficient
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in antigen presentation to CD8+ T cells (Lewis
et al., 1996) (Peace-Brewer et al., 1996). One
mutant, T134K, does not interact with
calreticulin and escapes from the ER without
its cargo. With this molecule, it has been pos-
tulated that low-affinity peptide binding pre-
cedes ‘quality control’ and that prolonged as-
sociation with TAP is required for peptide
optimization (Lewis and Elliott, 1998). TAP
and tapasin are usually released from the loaded
class I molecule after completion of high-
affinity peptide loading, fulfilling the criteria
of chaperones.

C. LRP and RAP

The low-density lipoprotein receptor-re-
lated protein (LRP) is a member of the low-
density lipoprotein receptor (LDL-R) family
and is involved in the uptake of a variety of
extracellular ligands (see Hussain et al., 1999
for review). During its synthesis in the ER,
LRP is bound by RAP. RAP is a 40-kDa ER
protein that escorts LRP to the Golgi com-
plex prior to dissociating and recycling back
to the ER (Bu and Schwartz, 1998). Mice
lacking RAP fail to express LRP at the cell
surface (Willnow et al., 1995). RAP’s func-
tion might be to protect newly synthesized
LRP from aggregation in the ER and possi-
bly to prevent the premature binding of
ligands to the receptor (Willnow et al., 1996).
Thus far, RAP has only been found strongly
associated to three proteins: gp330, the VLDL
receptor, and LRP. It remains to be seen
whether other LDL-R-like proteins require
similar, specialized chaperones.

D. CFTR, Hsp90 and Hsp70

We have described the CFTR protein in
the earlier section on protein topology. CFTR

is a multimembrane spanning glycoprotein
that is synthesized in the ER, and one of its
lumenal loops interacts with calnexin (Pind et
al., 1994). Its large cytoplasmic domain means
that it can be surveyed by cytosolic chaper-
ones too. Heat Shock Protein 90 (Hsp 90), the
cytoplasmic equivalent of gp96, is a major
player in the biogenesis of CFTR. Hsp 90 can
be irreversibly and specifically inactivated with
the drug geldanamycin. Geldanamycin treat-
ment prevents the association of Hsp90 with
immature CFTR and results in an increase in
proteasome-mediated degradation. These re-
sults strongly suggest that Hsp90 plays an
important role in the maturation of CFTR.
Hsp90 is also involved in the function of ste-
roid hormone receptors (Pratt and Toft, 1997)
and in generating evolutionary diversity (Ru-
therford and Lindquist, 1998), but these as-
pects of Hsp90 function are not discussed
further in this review.

CFTR can also interact with Hsp70 (the
cytosolic homolog of BiP) (Yang et al.,
1993). Hsp70 binds to the nucleotide-bind-
ing domain (NBD) of CFTR in the cytosol,
in association with the Hsp70 co-chaper-
one, Hdj-2 (a DnaJ family member). Com-
plex formation between Hsp70, Hdj2, and
CFTR declines as the CFTR R (regulatory )
domain gets synthesized. Purified Hsp70
and Hdj-2 also act in concert in vitro to
prevent aggregation of CFTR (Meacham et
al., 1999). Thus, Hsp70 and Hdj-2 may be
required to ensure the correct folding of the
cytoplasmic portion of CFTR. CFTR is an
example of an ER glycoprotein that is
heavily dependent on cytosolic factors for
its quality control.

XII. AGGREGATION AND
FUNCTIONAL AGGREGATION

When we think about protein aggrega-
tion, it normally has negative connotations,
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suggesting that our glycoprotein has failed
to fold properly. However, aggregation can
be put to good use. A clever paper from
Rivera and colleagues has shown that the
aggregation state of a protein chimera in the
ER can be used to control secretion and has
potential as a therapeutic recombinant pro-
tein delivery system (Rivera et al., 2000).
These authors used a fusion protein con-
taining either insulin or human growth fac-
tor at the C terminus, juxtaposed to a furin
cleavage site, a conditional aggregation
domain (CAD), and an N terminal signal
sequence to target the hybrid protein to the
ER. The CAD domain is a mutated sequence
from FKBP12 that normally dimerises with
itself and causes aggregation. Aggregation
can be totally reversed by adding small-
molecular-weight ligands of FKBP12 (in
this case AP22542 and AP21998) that bind
specifically to the mutated CAD domain.
After release of the aggregates, the hybrid
molecules travel to the Golgi and are cleaved
by the furin protease, liberating free insulin
or growth hormone.

Using this strategy, Rivera et al. were
able to accumulate hybrid insulin in the ER
of a non-secretory cell (HT1080) and re-
lease insulin into the extracellular medium
after the addition of micromolar quantities
of AP21998. Changing the timing/dose of
the drug could control the rate and basal
level of secretion. Diabetic mice who re-
ceived implanted engineered cells showed
an increase in blood insulin and a decrease
in blood sugar within 2 h of receiving a 10
mgkg-1 dose of AP22542.

This strategy of using the ER as a stor-
age site for therapeutics in nonspecialized
cells has considerable in vivo potential.
However, one must first consider the possi-
bility of unwanted immune responses be-
fore this strategy can be considered for hu-
man gene therapy. Interestingly, no unfolded
protein response was generated by the accu-
mulation of protein in the ER, and the ag-

gregates remained stable and were not
retrotranslocated for destruction by the
proteasome. This actually occurs more of-
ten than is generally realized. For example,
influenza HA mutants accumulate in the ER
when they cannot fold properly (Gallagher
et al., 1992) (Segal et al., 1992), as does the
temperature-sensitive VSV-G molecule
(Cannon et al., 1996). Our own unpublished
observations also suggest that HIV enve-
lope protein can accumulate in the ER dur-
ing its slow folding without inducing a UPR
(A. Land, I.B., in preparation). Understand-
ing how the ER accommodates such a mas-
sive increase in protein content without in-
ducing apoptosis is still awaited. This has
implications for other areas of biology, in-
cluding the maturation of B cells, which
hugely upregulate their ER as they devote
themselves to the synthesis of immunoglo-
bulin (Sitia et al., 1987) (Sitia et al., 1990).

XIII. ER-ASSOCIATED
DEGRADATION (ERAD)

Once an ER glycoprotein has folded
correctly, it can exit the ER and embark on
its journey through the secretory pathway
until it reaches its final destination. How-
ever, fully folded proteins only constitute a
small proportion of the material that is
folded. The cell must dispose of a lot of
imperfect polypeptides. One level of con-
trol arises during and immediately after
translation, before the protein even gets
translocated into the ER lumen. In fact, in
HeLa cells over 30% of newly translated
proteins, including ER proteins, are incor-
rectly synthesized and take the form of
DRiPs (Defective Ribosomal Products).
These are targeted for ubiquitination and
degradation by the proteasome before they
can access the ER (Schubert et al., 2000).
Such a mechanism may allow the cell to
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rapidly sample newly synthesised proteins
for evidence of viral infection (Reits et al.,
2000).

An ER protein can also be marked for
degradation if it fails to fold properly
(Plemper and Wolf, 1999). Broadly speak-
ing, there are four phases to this degrada-
tion process, commonly referred to as ER-
associated degradation or ERAD for short.

1. Mannose trimming by ER manno-
sidases

2. Retrotranslocation from the ER to the
cytosol

3. Ubiquitination of the deglycosylated
protein

4. Degradation of the protein by the
proteasome

The ERAD model is still in its adoles-
cence, and it is not yet clear whether all ER
glycoproteins require all of these steps or
whether additional regulatory features are
involved. Below, we discuss some aspects
of mannosidase I structure and function and
describe some examples of proteins that
incur the wrath of ERAD. A cartoon of
quality control and ERAD is presented in
Figure 2.

XIV. ααααα1,2 MANNOSIDASES

Humans posses a plethora of enzymes
that are involved in processing and modify-
ing N-linked sugars. Some of these reside in
the lysosome, such as β-mannosidase (which
is responsible for removing the β-linked
mannose sugar from the nonreducing end of
a glycan chain) and lysosomal α-manno-
sidase. Deficiencies in these enzymes can
lead to lysosomal storage diseases. Other
mannosidases reside in the ER and Golgi
complex and are also involved in trimming
N-terminal mannose residues on a glyco-

protein’s sugar tree. These mannosidases
are distinct from the glucosidases that are
involved in the removal of glucose during
the glucose cycle (described previously).

It is now becoming clear that a first step
in glycoprotein degradation is the clipping
of the branched N-linked mannose tree to a
Man8 form by mannosidase 1 after the gly-
coprotein has failed to pass the
“glycosylation exam” (see previous sections
on glycosylation and calnexin). Crystal struc-
tures of the single yeast and one of the
human α1,2 mannosidases are now available
and provide considerable insight into the
function of these proteins that are at the
crossroads of productive folding and degra-
dation (Vallee et al., 2000a; Vallee et al.,
2000b). Yeast α1,2 mannosidase was the first
to be crystallized. The yeast protein is a 63-
kDa type II transmembrane ER protein with
a catalytic C terminal domain exposed to
the reticulum. The 1.4 Å structure reveals
that the protein has a novel (αα )7 barrel
fold, with seven parallel inner helices run-
ning antiparallel to seven outer helices. The
structure is stabilized by a solitary and uni-
versally conserved disulfide bond that is
necessary for enzyme activity (Lipari and
Herscovics, 1996). Within the crystal struc-
ture, the N-linked glycan of an adjacent
molecule occupies the central 15 Å cavity,
interacting with the putative active site.

By now we should not be surprised that
calcium is required for the activity of α1,2

mannosidase, and the structure also reveals
that a calcium ion is bound coordinated by
the carboxylate groups of four Glu residues
that are also essential for protein activity.
Ca2+ is found away from the carbohydrate,
suggesting that it is involved in stability
rather than catalysis per se. In the absence
of a proper substrate, however, some con-
clusions about the active site remain am-
biguous.

Since the crystallization of the yeast pro-
tein, the same group has solved the structure of
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the human enzyme in the presence of the in-
hibitors kifunensine and deoxymannojirimycin
(Vallee et al., 2000a). These two compounds
both bind to the base of the enzyme’s active
site, and are held in place by Ca2+. Interestingly,
neither inhibitor induces any conformational
change in the enzyme, suggesting that the ac-
tive site is preformed prior to substrate binding.
Yeast and human α1,2 mannosidases are practi-
cally identical, but there are some differences.
For example, kifunensine can bind to human
α1,2 mannosidase but is prevented from binding
to the yeast enzyme by steric hindrance. Unfor-
tunately, despite the information gleaned from
the inhibitor data, it has not yet been possible to
clearly dissect the precise catalytic mechanism
of α1,2 mannosidases.

Earlier experiments in yeast demonstrated
that variations in oligosaccharide processing
could alter the rate of degradation of yeast
preproalpha factor when it was expressed in a
mammalian cell (Su et al., 1993). More recent
experiments with α1-antitrypsin in hepatocytes
have shown that release of calnexin from
improperly folded molecules is followed by
posttranslational trimming of mannose resi-
dues. Mannose trimming was shown to occur
in the ER and it preceded degradation by the
proteasome. Inhibition of ER mannosidase I
with kifunensin suppresses ERAD and leads
to the accumulation of misfolded α1-antit-
rypsin. The removal of glucose from the
polypeptide chain, rather than the degradation
step itself, was shown to be the rate limiting
step in the disposal of α1-antitrypsin (Liu et
al., 1997). In a further study, the same group
investigated the behavior of a naturally occur-
ring α1-antitrypsin mutant, PI Z, which is a
common cause of α1-antitrypsin deficiency in
man. This variant fails to polymerize properly
and is poorly secreted from the liver (Brantly
et al., 1988). In hepatoma cells transfected
with PI Z, a second ER degradation pathway
seems to be involved. PI Z was first trimmed
by ER mannosidase II prior to elimination by
a nonproteasomal, tyrosine-phosphatase-de-

pendent pathway (Cabral et al., 2000). How-
ever, another group used the mannosidase
inhibitors kifunensin and deoxymann-
ojirimycin to conclude that secretion of the
α1-antitrypsin Z mutant was increased when
oligosaccharide trimming was prevented
(Marcus and Perlmutter, 2000). Various other
molecules have been shown to require man-
nose trimming in the ER prior to degradation,
including CPY in yeast (Jakob et al., 1998)
and the MHC class I molecule in  man (Wil-
son et al., 2000).

The α1-antitrypsin studies require reso-
lution and further investigation, and caution
must be exercised in concluding too much
from inhibitor studies alone. It is entirely
possible, however, that several ERAD path-
ways exist. This must be true at least in the
case of nonglycosylated ER proteins, which
cannot be targeted by mannosidases, and it
also seems to hold for the T Cell Receptor
(TCR). Failure to assemble the subunits of
the TCR into the correct stoichiometry re-
sults in their degradation. An investigation
into the behavior of incorrectly assembled
TCRs revealed that the CD3-δ subunit and
the TCR-α subunit followed different degra-
dation pathways (Yang et al., 1998). CD3-δ
is first mannose-trimmed, ubiquitinated at
the ER membrane and then degraded by the
proteasome. Inhibiting mannosidase activ-
ity results in the retention of CD3-δ at the
ER membrane in a complex with another
TCR subunit, CD3-ε. However, TCR-α,
while also requiring the proteasome for its
degradation, is independent of mannose trim-
ming and can still be retrotranslocated in
the presence of proteasome inhibitors.

XV. DEATH BY THE
PROTEASOME

The examples in the previous section
make it sound logical that the proteasome, a
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large multisubunit proteolytic complex in
the cytosol, should be involved in the final
stages of ERAD. However, for many years
it was thought that a specific ER protease or
peptidase would mediate the destruction of
ER proteins. An important intellectual break-
through came with work in both yeast and
in mammalian cells. It was shown that the
proteasome was required for the breakdown
of misfolded ER proteins, including CFTR
(Ward et al., 1995) (Jensen et al., 1995) the
MHC class I molecule (Wiertz et al., 1996)
and HMGCoA Reductase (Hampton et al.,
1996). In the case of MHC class I,
deglycosylated MHC class I heavy chain
intermediates were found associated with
proteasomes in cells that had been treated
with a proteasome inhibitor.

This discovery of the proteasome at the
heart of ERAD necessitates the existence of
a retro-translocation event that can physi-
cally transfer the aberrant protein across the
ER membrane into the cytosol. Both bio-
chemical and genetic approaches reveal that
this is the Sec61 component of the translocon
itself (Wiertz et al., 1996) (Pilon et al., 1997)
(Plemper et al., 1999). In the case of some
membrane proteins, a pore may not be nec-
essary. One investigation suggests that the
proteasome can actively drive the retro-trans-
location of ER membrane proteins through
the lipid bilayer (Mayer et al., 1998).

XVI. UBIQUITINATION

Ubiquitin is an abundant, small-molecu-
lar-weight 76-residue peptide that acts as a
tag to single out proteins for destruction
(Hershko and Ciechanover, 1998)
(Ciechanover et al., 2000) (Jentsch and
Pyrowolakis, 2000). Ubiquitin is covalently
joined to its target through an isopeptide
bond between the ε-amino group of a Lys in
the target protein and the C-terminal Gly of

Ubiquitin. It has been demonstrated that
ubiquitination of a retrotranslocated ER
polypeptide is required for its elimination
by the proteasome. An important advance
came in yeast, where it was first shown that
there was a link between defective protein
translocation, ubiquitination, and degrada-
tion of an ER protein by the proteasome
(Sommer and Jentsch, 1993). These inves-
tigators discovered that ubiquitin conjugat-
ing enzyme Ubc6p (which adds ubiquitin to
the condemned polypeptide chain) is an in-
tegral ER membrane protein involved in the
selective degradation of ER proteins. A sec-
ond ubiquitin-conjugating enzyme, Ubc7p,
has also been implicated in the breakdown
of yeast carboxypeptidaseY (Hiller et al.,
1996). In the case of Ubc7p, which is soluble
and cytosolic, recruitment to the ER mem-
brane is mediated by Cue1p, an ER mem-
brane-bound protein. Yeast lacking Cue1p
can no longer target Ubc7p to the ER, and
in the absence of ubiquitination retrograde
transport of misfolded lumenal proteins does
not occur (Biederer et al., 1997).

Two other proteins involved in ERAD
of HMGCoA Reductase in yeast are Hrd1p
(also known as Der3p) and Hrd3p. Hrd1p is
predicted to be a large multimembrane span-
ning protein with a cytosolically disposed
RING-H2 domain that is essential for ERAD
(Hampton et al., 1996). The RING-H2 mo-
tif is a conserved element in ubiquitin li-
gases (Xie and Varshavsky, 1999), suggest-
ing that Hrd1p itself may be involved in the
ubiquitination of ERAD substrates. Hrd3p
is a single-pass ER glycoprotein with a large
N-terminal, lumenal domain. Correct for-
mation of a complex between Hrd1p and
Hrd3p is required for ERAD, possibly
through the prevention of Hrd1p degrada-
tion. It appears that these two proteins may
be involved in ER to cytosol communica-
tion, alerting the ubiquitination machinery
to the folding status of at least some yeast
proteins in the ER (Gardner et al., 2000).
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Progress in this field has been remark-
ably rapid over the last few years, and we
can expect many more interesting develop-
ments in the years ahead.

XVII. THE UNFOLDED PROTEIN
RESPONSE (UPR)

The UPR is designed to deal with stress
situations that lead to the accumulation of
ER proteins by upregulating key chaper-
ones and folding enzymes. We briefly out-
line the components involved here, because
the subject has been covered well in some
excellent reviews (Hampton, 2000)
(Sidrauski et al., 1998) (Shamu, 1998)
(Chapman et al., 1998) (Kaufman, 1999).

The mechanistic details of the UPR are
being dissected by some impressive work in
yeast. Certain genes encoding ER chaper-
ones, such as BiP and PDI, contain a 5' 22
base pair element in their promoter region
that is both necessary and sufficient to al-
low enhanced transcription in the presence
of unfolded proteins in the ER (Mori et al.,
1992) (Kohno et al., 1993). This motif is
called the unfolded protein response ele-
ment (UPRE). Transcriptional control at the
UPRE is mediated by Hac1p, a UPRE-spe-
cific transcription factor (Mori et al., 1996)
(Cox and Walter, 1996) (Nikawa et al.,
1996). Hac1p contains a C-terminal PEST
domain that allows its expression level to be
regulated by ubiquitination and subsequent
proteolysis, and the protein has a very short
half-life.

Under normal circumstances, Hac1p
mRNA is present as a single species
(Hac1u). However, after activation of the
UPR, Hac1p mRNA is spliced and an in-
tron is removed, changing the ORF to yield
Hac1pi. Hac1pi has a different C-terminus
and is the only form of the protein that can
be detected in cells undergoing a UPR.

The mechanism by which this alternative
splicing is performed is even more unusual.
The job is done not by the spliceosome,
but by Ire1p and a tRNA ligase called
RLG1. IRE1 was discovered from a ge-
netic screen performed to isolate yeast that
failed to mount appropriate UPRs. IRE1
encodes a transmembrane kinase that was
initially localized to the ER or nuclear
membrane (Cox et al., 1993) (Mori et al.,
1993). It is now reasonably certain that
Ire1p resides in the ER, with its N-terminal
sensor domain facing the ER lumen. After
detection of unfolded proteins by a yet
unknown mechanism, Ire1p oligomerizes
and is trans auto-phosphorylated. The C-
terminal domain is cut loose and then trav-
els to the nucleus, where it acts as an endo-
nuclease to cleave both splice junctions of
HAC1u mRNA. RLG1 then joins the two
exons together, creating HAC1i mRNA,
which can exit the nucleus, become trans-
lated and return as a protein to the nucleus,
where the activation of UPRE containing
genes can be performed (Sidrauski et al.,
1996) (Sidrauski and Walter, 1997). Lately,
it has been suggested that presenilin-1, a
protein known to be involved in the cleav-
age of amyloid precursor protein (APP), is
involved in cleaving Ire1p at the ER mem-
brane (Niwa et al., 1999) (Katayama et al.,
1999). It will be interesting to see how
presenilin-1 performs this task.

Up-regulation of ER chaperones is not
the only event that occurs during a UPR.
Protein synthesis must be coupled to other
metabolic pathways as the cell coordinates
its efforts. Lipid synthesis, for example, is
also upregulated, enabling membrane bio-
synthesis to keep pace with the growing
number of proteins in the ER. Inositol is the
key regulator here (Cox et al., 1997). Low
inositol levels stimulate transcription of
genes containing the UASino element in their
promoters. This element is present in a num-
ber of genes that are required for phospho-
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lipid biosynthesis (Carman and Henry,
1989).

Recent attempts to understand the glo-
bal pattern of UPR regulation in yeast have
focused on the use of microarrays to exam-
ine the changes in transcription that occur
during ER stress (Travers et al., 2000). Gene
families strongly upregulated by the UPR
(using either DTT or tunicamycin as the
stress) include those involved in transloca-
tion, glycosylation, disulfide bond forma-
tion, ubiquitination, lipid metabolism, pro-
tein sorting, and trafficking. This work is
the first step in defining how the whole cell
responds to stress, and shows that the UPR
is intimately linked with ERAD. ERAD
requires an intact UPR to operate, and a loss
of ERAD results in induction of the UPR.
Although cells are viable in the absence of
some UPR components, their viability is
greatly decreased when both ERAD and the
UPR are compromised.

This approach has allowed the identifi-
cation of novel genes that may be involved
in the UPR or ERAD. One such example is
Per5p, a UPR-induced multimembrane span-
ning protein required for N-linked glyco-
sylation, possibly at the level of conjugating
dolichol linked carbohydrate to ER proteins.
The same study also showed that PER8/
SON1/RPN4 is up-regulated by the UPR
and is required for ERAD. SON1 is a tran-
scriptional regulator of proteasomal subunit
genes (Ng et al., 2000). Other reports have
supplemented these findings. For example,
foreign proteins introduced into yeast re-
quire a functional UPR in order to get de-
graded by ERAD (Casagrande et al., 2000)
and a link between ERAD and the UPR has
also been demonstrated in yeast that lack
the ubiquitin conjugating enzymes Ubc1p
and Ubc7p (Friedlander et al., 2000).

In mammalian cells there are at least
two Ire1p homologues, Ire α and β. A mam-
malian equivalent of Hac1p has not yet been
isolated, and it remains possible that there

are differences in the ways that yeast and
higher eukaryotes handle unfolded proteins.
We also need to appreciate that yeast and
mammalian cells are adapted to grow in
quite different environments. Yeast can en-
dure wide fluctuations in temperature, pH,
and nutrient availability, whereas a multi-
cellular organism protects its internal work-
ers. Within an organism, only some cell
types, such as the digestive tract, the lung
epithelia, and the vascular system experi-
ence stress. The stresses encountered may
be very diverse and we may find that in
animals there are differences in cell-spe-
cific UPRs.

XVIII. CHOP AND PERK

CHOP and PERK may sound like a
cabaret double act, but it is no laughing
matter when your cell has to upregulate
these two proteins. It usually means that the
ER is in trouble and that the cell may go into
apoptosis. CHOP (also known as
GADD153) is a mammalian nuclear protein
that dimerizes with C/EBP transcription fac-
tors and is induced by ER stress. CHOP is
serine phosphorylated, and this is required
for its transcriptional activity and for the
inhibition of differentiation of adipose cells
(Wang and Ron, 1996) (Zinszner et al.,
1998). CHOP expression leads to pro-
grammed cell death, which is markedly re-
duced in mice that lack the CHOP gene.
CHOP is also required for the stress-depen-
dent activation of numerous Downstream of
CHOP genes (DOC genes). DOC genes have
been implicated in the changes of cell phe-
notype that accompany this process (Wang
et al., 1998b). Overexpression of mamma-
lian Ire1 also activates CHOP and can lead
to apoptosis in mammalian cells (Wang et
al., 1998a), showing that Ire1 is a central
control point in higher eukaryotes as well as
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in yeast. The precise way in which Ire1
coordinates its different activities is still to
be resolved.

Unlike CHOP, PERK is a type I ER
transmembrane protein with a cytoplasmi-
cally disposed protein kinase domain, re-
sembling that of Ire1 (Harding et al., 1999).
After ER stress, PERK increases its kinase
activity and phosphorylates the eukaryotic
initiation factor eIF2α. This inhibits mRNA
translation and provides a link between pro-
tein translation and ER stress. Activation of
PERK is therefore likely to down-regulate
general protein synthesis and protects the
ER from having to deal with too many newly
translated substrates. PERK also acts to in-
duce growth arrest, causing the cell to pause
in the G1 phase of the cell cycle (Brewer
and Diehl, 2000). Cells that lack PERK are
severely compromised in their ability to
survive ER stress conditions (Harding et al.,
2000).

A recent paper from Bertolotti et al.
shows that PERK and Ire1 can communi-
cate with BiP in the ER. Under normal
growth conditions, the lumenal domains of
PERK and Ire1 interact with BiP, but when
an ER stress is provided BiP reversibly dis-
sociates from these two proteins. At the
same time, PERK and Ire1 form higher-
order complexes that can be disrupted by
overexpression of BiP (Bertolotti et al.,
2000). Overexpression of BiP previously
has been shown to protect CHO cells from
ER stress (Morris et al., 1997). The authors
suggest that this may provide a mechanism
to regulate stress signaling from the ER:
when BiP is busy dealing with unfolded
proteins, Ire1 and PERK are left free to
dimerize, become activated, and signal the
problem to the nucleus.

The discovery of PERK, CHOP, and
their downstream accomplices is providing
us with a far greater appreciation of how a
cell coordinates its adaptive response to
stress.

XIX. CONCLUDING REMARKS

In this review, we have highlighted some
of the events in which a glycoprotein par-
ticipates as it tries to make it through the
ER. The journey is fraught with danger, and
the young protein needs all the help it can
get from a dense crowd of eager assistants,
the chaperones. Briefly, we have reviewed
some key features of the process: the oxi-
dizing environment, the formation of disul-
fide bonds, and the importance of glyco-
sylation. We have also considered the cases
of some individual proteins and drawn at-
tention to what they have in common and
how they differ. Of particular excitement
for the future is the prospect of a global
understanding of how protein folding and
degradation are coordinated with other meta-
bolic processes in the cell and how a better
understanding of glycoprotein folding could
lead to therapeutic advances for some life-
threatening diseases and infections.
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