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Abstract. In this study, we show that posttranslational 
folding of Vesicular Stomatitis virus G protein 
subunits can involve noncovalent, multimeric com- 
plexes as transient intermediates. The complexes are 
heterogeneous in size (4-21S2o,w), contain several G 
glycopolypeptides, and are associated with 
BiP/GRP78. The newly synthesized, partially in- 
trachain disulfide-bonded G proteins enter these com- 
plexes immediately after chain termination, and are 
released 1-4 min later as fully oxidized, trimerization- 
competent monomers. These monomers are properly 
folded, judging by their binding of conformation- 
specific mAbs. When the G protein is translated in 

the presence of DTT, it remains reduced, largely un- 
folded and aggregated in the ER, but it can fold suc- 
cessfully when the DTT is removed. In this case, con- 
trary to normal folding, the aggregates become 
transiently disulfide cross-linked. We also demon- 
strated that the fidelity of the folding process is depen- 
dent on metabolic energy. Finally, we established that 
the G protein of the folding mutant of the Vesicular 
Stomatitis virus, ts045, is blocked at a relatively late 
step in the folding pathway and remains associated 
with oligomeric, BiP/GRP78-containing folding com- 
plexes. 

URIN~ the folding process, newly synthesized proteins 
have an enormous number of conformational states 
as possible options. Instead of sampling all of these 

in a search for an energy minimum, folding occurs along 
defined pathways via specific conformational intermediates 
(Anfinsen and Scheraga, 1975; Creighton, 1986; Jaenicke, 
1991). In living cells, the navigation of most proteins through 
the folding pathway depends critically on the action of mo- 
lecular chaperones and folding enzymes (for reviews see 
Freedman, 1984; Pelham, 1986; Rothman, 1989; Gatenby 
and Ellis, 1990; Gething and Sambrook, 1992). These are 
thought to act by preventing nonproductive side reactions 
such as irreversible aggregation, and by accelerating slow 
steps in the folding process. 

As a compartment specialized for protein folding and 
maturation, the lumen of the ER is particularly rich in resi- 
dent chaperones and folding enzymes. Chaperones associate 
with folding intermediates and misfolded proteins, and are 
thought to facilitate protein translocation into the ER (Vogel 
et al., 1990), folding, oligomeric assembly, and sorting (for 
reviews see Rothman, 1989; Ellis and Van der Vies, 1991; 
Gething and Sambrook, 1992). In the ER they include im- 
munoglobulin heavy chain binding protein (BiP/GRP78) ~ 
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(an HSP70 analog) and GRP94 (an HSP90 analog). The 
folding enzymes include prolyl c/s-trans-isomerases (Stamnes 
et al., 1991) and protein disulfide isomerase (PDI) (Freed- 
man, 1984). PDI is a redox enzyme needed for the correct 
formation of disulfides (Freedman, 1984; Bulleid and Freed- 
man, 1988). For many proteins synthesized in the ER, the 
sequential formation of disulfide bonds constitutes a require- 
ment for normal folding, and for subsequent transport to the 
Golgi complex and beyond. To allow disulfide formation, the 
redox conditions inside the ER lumen are more oxidizing 
than in the cytosol. 

To better understand protein folding in the ER, we have 
focused on viral membrane glycoproteins. The G protein of 
the Indiana strain of Vesicular Stomatitis virus (VSV) used 
in this study is, in its mature form, a noncovalently as- 
sociated homotrimer with a subunit size of 67 kD (Kreis and 
Lodish, 1986; Doms et al., 1987). Each subunit contains a 
single membrane spanning domain, a short carboxy-terminal 
cytoplasmic tail and a large ectodomaln with two N-linked 
oligosaccharides (Rothman and Ixxlish, 1977; Rose et al., 
1980; Rose and Gallione, 1981). The ectodomain contains 
12 cysteines which are thought to form intrachain disulfide 
bonds. 

Pulse-chase studies have shown that G protein folding in 
the ER involves both co- and posttranslationai events (Mach- 
amer et al., 1990; our unpublished results). After chain ter- 
mination, incompletely disulfide-bonded folding intermedi- 
ates are seen in association with BiP/GRP78. With a 
half-time of about 2 min the G proteins become fully oxi- 
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dized, lose their association with BiP/GRP78, and reach the 
native conformation, as judged by the binding of confor- 
mation-specific mAbs (Machamer et al., 1990). The forma- 
tion of noncovalent, transport-competent homotrimers oc- 
curs with a half time of ~8 rain, and the trimers are 
selectively transported via the Golgi complex to the plasma 
membrane (Doms et al., 1987; Zagouras et al., 1991). If the 
G protein misfolds, as is the case for nonglycosylated G pro- 
tein and some mutants, it enters aggregates that are either 
noncovalently associated or disulfide cross-linked (Gibson, 
1979; Doms et al., 1988; Machamer and Rose, 1988a). 

In this study, we have analyzed the folding of G protein in 
the ER of CHO15B cells. A pulse-chase approach was used 
in conjunction with sucrose gradient centrifugation, immu- 
noprecipitation and SDS-PAGE of nonreduced samples. Our 
results show that folding of G protein subunits can involve 
transient, multimolecular complexes or aggregates, and 
that-depending on the conditions-these may be stabilized 
by aberrant interchain disulfide bonds. For VSV G protein 
the formation of such transient multimolecular complexes 
apparently is part of the normal folding process. Our results 
also demonstrate that the posttranslational folding of G pro- 
rein, as previously seen for Influenza virus hemagglutinin 
(HA) (Braakman et al., 1992a, b), is an energy-requiring 
process, which can be easily manipulated by the addition or 
removal of DTT. 

Materials and Methods 

Cell Lines, Viruses, and Reagents 
A mutant CHO cell line (CHO15B) was used because these cells lack the 
enzyme N-acetylglucosamine transferase I, so that the N-linked oligosac- 
charides do not get terminally glycosylated. This allows G proteins in the 
ER to be conveniently distinguished on SDS-PAGE from G protein that has 
reached the Golgi complex and beyond (Balch et al., 1986). Indiana sero- 
type VSV wild-type virus was obtained from Dr. Jack Rose (Department 
of Pathology, Yale University, New Haven, CT). N-ethyl maleimide (NEM) 
was purchased from Sigma Chemical Co. (St. Louis, MO) and monensin 
from Calbiochem Corp. (La Jolla, California). mAb 1-14 was obtained from 
Dr. Dough Lyles (Bowman Gray School of Medicine, Wake Forest, IL), the 
polyclonal anti-VSV serum from Dr. Jack Rose, and the anti binding protein 
(BiP) antibody from Dr. David Bole (Bole et al., 1986). The preparation 
of P5D4, the rnAb against the tail of G protein has been described (Kreis 
and Lodish, 1986). 

Infection, Labeling, and Chase Conditions 
CHO15B ceils were grown and infected with VSV as previously described 
in detail (Balch et al., 1986). For complete details of labeling and chase 
conditions see (Braakman et al., 1991; 1992a, b). In brief: 90% confluent 
60-ram dishes of CHO15B cells, infected with VSV at a multiplicity of in- 
fection (m.o.i.) of 20 at 37~ were used 4-5 h after infection. Before label- 
ing, cells were washed twice with PBS and then depleted for 15 min at 37~ 
in serum-froe medium without methionine and cysteine. Each dish was 
pulsed with 50/~Ci of [35S]methionine and 50/~Ci of [35S]cysteine for the 
indicated time at 37~ The pulse was terminated and the chase begun by 
washing once and then incubating at 37~ in serum-free medium containing 
5 mM methionine, 5 mM cysteine, and 0.5 mM cycloheximide for the indi- 
cated times. Although cycloheximide was added during the chase, the 
amount of labeled G protein increased during the first 3 min. This phenome- 
non, previously discussed in detail (Braakman et al., 1991), is observed 
whenever the length of the radioactive pulse approaches the translation time 
of the analyzed polypeptide. The chase was terminated by washing the cells 
twice with ice-oold PBS containing 20 mM NEM. The cells were lysed by 
adding 1% Triton X-100 in MNT buffer (20 mM MES, 30 mM Tris, 100 
mM NaC1, 1.25 mM EDTA, 1 mM EGTA), pH 7.4, containing 20 mM 
NEM. In experiments where BiP and associated proteins were immunopre- 
cipitated, cells were lysed in 20 mM Tris, pH 7.5, 10 mM C12Es, 1 raM 

MgCl2, and 20 mM NEM, containing 30 U/ml of apyrase (Sigma Chemi- 
cal Co.) to deplete ATP levels in the lysate (Hurtley et al., 1989). To prevent 
proteolysis, the lysis buffers contained 1 mM PMSF and 10/~g/ml each of 
chymostatin, leupeptin, antipain, and pepstatin. All lysates were spun for 
5 min at 12,000 g to pellet nuclei and cell debris before further processing. 

Immunoprecipitations and SDS-PAGE 
Immunoprecipitations were carried out as previously described (De Silva 
et al., 1990). Samples were prepared for SDS-PAGE and fluorographed as 
previously described (Balch et al., 1986). 

Velocity Gradient Centrifugation 
The centrifugation conditions used to determine the size of folding inter- 
mediates were as previously described (Doms et al., 1987) except that an 
SW40 rotor was used. In brief: the lysates were prepared in low pH (5.5) 
lysis buffer and layered over a 5-20% sucrose gradient (MNT, pH 5.8, and 
0.5% TXI00) with a 1 ml 60% sucrose cushion at the bottom of the tube. 
The gradient was centrifuged at 40000 rpm for 17 h at 4~ At the end of 
the run the gradients were fractionated from the bottom and the pH of the 
fractions was adjusted to 7. The distribution of G protein was followed by 
immunoprecipitation with a mixture of the polyclonal anti-VSV serum and 
the mAb P5EH. To check conformation, the different fractions were also 
immunoprecipitated with the mAb 1-14. 

Results 

Conformational Maturation of G Protein 
The folding of G protein in VSV (Indiana strain) infected 
CHO15B cells was analyzed using a pulse-chase approach 
that took advantage of the increase in electrophoretic mobil- 
ity in oxidized G protein caused by the formation of in- 
trachain disulfide cross-links (Machamer et al., 1990; Braak- 
man et al., 1991). Infected CHO15B cells were pulsed with 
[3~S]methionine and [35S]cysteine for 2 min and chased for 
different times up to 20 rain. Before lysis and immunoprecip- 
itation with anti-VSV antibodies, the cells were cooled and 
treated with NEM, which alkylates any remaining free sulf- 
hydryl groups and thus prevents further disulfide bond for- 
marion (Creighton, 1986). The immunoprecipitates were 
subjected to SDS-PAGE under reducing and nonreducing 
conditions. 

The G protein labeled during the 2-min pulse gave a hetero- 
geneous banding pattern on the nonreducing gels (Fig. 1 A, 
lane/). A diffuse set of bands, denoted IT for 'intermediates" 
corresponded to G proteins with an incomplete set of in- 
tramolecular disulfide bonds (Machamer et al., 1990). The 
faster migrating, sharper band (called NT for 'native') cor- 
responded to the fully oxidized, untrimmed G protein. After 
20 rain of chase (Fig. 1 A, lane 6), a still faster migrating 
band (called Gg) appeared. This hand represented the oxi- 
dized G proteins that had reached the Golgi complex and 
whose N-linked sugar moieties had been trimmed (Balch et 
al., 1986). No G protein was present at the top of the gel in- 
dicating that cross-linked aggregates of folding intermediates 
or misfolded forms of G protein did not arise. The higher 
molecular weight band that is present in lanes 3-6 i s  a hack- 
ground band unrelated to VSV G protein. When reduced be- 
fore electrophoresis (Fig. 1 B), the same samples showed 
only one (Fig. 1 B, lanes 1-5) or two (Fig. 1 B, lane 6) G 
protein bands depending on whether any of the G protein had 
been trimmed in the Golgi complex. After 20 rain of chase, 
about one third of G protein had reached the Golgi complex 
(Fig. 1 B, lane 6) judging by its faster mobility (Gg) (Balch 
et al., 1986). 
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Figure L Time course of G 
protein oxidation. 5 h after in- 
fection with VSV, CHO15B 
cells were pulse labeled for 
2 rain at 370C and chased for 
the indicated times. Detergent 
lysates from the cells were im- 
munoprecipitated with a poly- 
clonal antibody against VSV, 
and analyzed by 7.5% SDS- 
PAGE under nonreducing (A) 
and reducing (B) conditions. 
/T, folding intermediates; NZ, 
native, completely oxidized G 
protein; R, completely re- 
duced G protein; and Gg, G 
protein with trimmed carbo- 

hydrates, which has reached the Golgi. The higher molecular 
weight band that is present in lanes 3-6 is a background band un- 
related to VSV G protein. 

Thus, in agreement with our previous findings in COS 
cells (Machamer et al., 1990), the G protein was converted 
to the fully oxidized form with a half time of •1-3 min after 
the end of the pulse. That folding and disulfide bond forma- 
tion already begin on the nascent chain, has been seen for 
immunoglobulin light chains (Bergman and Kuehl, 1979), 
for albumin (Peters and Davidson, 1982), and for HA 
(Braakman et al., 1991). No fully reduced, full-length G 
protein was ever seen after the pulse (Machamer et al., 1990) 
(Fig. 1 A, lane/), suggesting that some of the disulfide bonds 
in G protein must already form before chain termination. 
Our previous studies have shown that the folding intermedi- 
ates (IT) are transiently associated with BiP/GRP78 (Mach- 
amer et al., 1990), that the expression of conformational an- 
tigenic epitopes recognized by mAbs accompanies the 
oxidation and folding of G protein, and that the protein 
trimerizes before its arrival to the Golgi complex (Doms et 
al., 1987, 1988; Machamer et al., 1990). Taken together, 
these data provide the basic outline for the conformational 
maturation of G protein in the ER. 

lY lT  Inhibits the Folding and Transport of G Protein 

We recently found that DTT, a membrane-permeable reduc- 
ing agent, prevents co- and posttranslational disulfide bond 
formation in Influenza HA without markedly affecting its 
translation, translocation or covalent processing in the ER 
(Braakman et al., 1992a, b). To determine what conse- 
quences the addition of DTT would have on G protein folding 
and transport, we performed a pulse-chase experiment in the 
presence of 5 mM DTT. Fig. 2 A (lanes I and 2) shows that 
G protein was translated normally in the presence of DTT, 
but, judged by its slow migration on the gel identical to in 
vitro reduced G protein (Fig. 2 C, R, lanes I and 2), it failed 
to acquire disulfide bonds. That it remained incompletely 
folded was shown by the lack of precipitation with a mAb 
called 1-14 (Fig. 2 B, lanes I and 2). 1-14 recognizes epitope 
B-2, a conformational epitope expressed only in fully oxi- 
dized forms of G protein (Lefrancois and Lyles, 1982; 
Machamer et ai., 1990). The N-linked oligosaccharide side 
chains of the reduced G protein remained untrimmed even 
after 40 min of chase in the presence of DTT, indicating that 

Figure 2. Effects of DTT on newly synthesized G protein. CHO15B 
cells infected with VSV were incubated with 5 mM DTT for 5 rain 
before and during a 2-min pulse at 370C. This was followed by 
chase periods with and without DTT, as indicated. Detergent 1y- 
sates were immunoprecipitated with PSD4, a mAb against the tail 
of G protein (A and C) or 1-14, a conformation-specific mAb against 
G protein (B and D), and analyzed by 7.5 % SDS-PAGE under non- 
reducing (A and B) and reducing (C and D) conditions. S-S Agg, 
interchain disulfide-linked aggregates of G protein. 

the protein was neither degraded nor transported to the Golgi 
(not shown). The formation of disulfide bonds was thus 
necessary for proper folding and for transport of G protein 
out of the ER. 

Covalent Complexes as Intermediates in 
Posttranslational Folding 

When the DTT was removed, the reduced G protein that was 
trapped in the ER began to fold and was, after 10-30 min, 
transported to the Golgi complex in a fully oxidized and 1-14 
precipitable form (Fig. 2 A, lanes 5 and 6). Thus, DTT wash- 
out resulted in full recovery of correctly folded G protein. 
This demonstrated that while the G protein, like influenza 
HA (Braakman et al., 1992a), did require disulfide bond for- 
marion for folding, none of the disulfides had to form 
cotranslationaUy for G protein to acquire its normal confor- 
marion. As discussed above, the formation of disulfide bonds 
normally starts on the nascent chains with additional 
disulfides formed posttranslationally. Apparently proper 
folding could also be achieved with all disulfides forming on 
the full-length glycopolypeptide chain. 

Although the final product of the posttranslational folding 
process after DTT removal was the correctly folded G pro- 
tein, the pathway that led to it was not the same as that seen 
during normal folding. Immediately after the removal of 
DTT, large disulfide cross-linked complexes were foi'med, 
which did not enter the separating gel when the sample was 
not reduced (Fig. 2 A, lanes 3-5). These aggregates were, 
however, readily reduced to monomers when boiled with 
SDS and DTT, indicating that they were stabilized by inter- 
chain disulfide bonds (Fig. 2 C, lanes 3-5). About 10 min 
after DTT wash-out, G protein emerged from these covalent 
aggregates as untrimmed, oxidized monomers which had the 
gel mobility of normal folding intermediates and fully oxi- 
dized G protein (Fig. 2 A, lane 5). Clearly, the aberrant inter- 
chain disulfides were eliminated, and the aggregated G pro- 

de Silva et al. Folding Complexes in the ER 649 



Figure 3. Reduced G protein occurs in large complexes bound to 
BiP. CHO15B cells infected with VSV were incubated with 5 mM 
DTT for 5 min before and during a 2-min pulse at 37~ DTT was 
also included in the chase medium for 5 min. The detergent lysates 
were subjected to velocity centrifugation on sucrose gradients and 
the gradients were fractionated from the bottom. Lysate corre- 
sponding to 20% of the amount that was loaded on the gradient was 
also saved for precipitations (L). The fractions and the lysate sam- 
ple (L) were precipitated with a mixture of P5D4 and a rabbit poly- 
clonal antiserum (A) or with the conformation-specific mouse mAb 
1-14 (B). Samples were analyzed on 7.5% SDS-PAGE under non- 
reducing conditions. The position of the G protein monomer and 
G protein trimer are indicated. For C, the chase was for only 2 min 
in 5 mM DTT, after which the ceils were lysed with the nonionic 
detergent CI2E8 in the presence of apyrase to deplete ATP and 
stabilize the interaction between BiP and associating forms of G 
protein. The lysate was then immunoprecipitated with a rnAb 
against BiP, mAb 1-14, and a polyclonal antibody against VSV. 

teins thereby rescued (Fig. 2 A, Gg, lane 6). This provided 
a further illustration for the capacity of the ER machinery 
to reshuffle disulfide bonds and thus rescue misfolded pro- 
teins that had formed illegitimate covalent complexes (see 
Braakman et al., 1992b). 

How can the formation of cross-linked aggregates after 
DTT removal be explained? Cross-linked aggregates do not 
normally occur as intermediates in the folding pathway. One 
possibility is that the reduced G protein subunits in the ER 
are already present as noncovalent aggregates. When the re- 
dox conditions return to normal and disulfide bonds begin 
to form, some interchain disulfides may arise simply be- 
cause of the close proximity between the unfolded G protein 
polypeptides. To test this possibility, we subjected lysates 
from the DTT-treated cells to velocity centrifugation and 
analyzed the oligomeric state of the reduced G protein prior 
to DTT wash-out. Infected cells were labeled for 2 min and 
chased for 5 min in the continued presence of DTT. At the 
end of the chase, the cells were alkylated and solubilized in 
Triton X-100 and the postnuclear supernatant was analyzed 
on sucrose gradients containing Triton X-100. The G protein 
was recovered as heterogeneous particles with sedimentation 
coefficients ranging from llS2~w to larger than 21S20.w (Fig. 
3 A, fractions 1-6). Since monomeric and trimeric G pro- 
teins have sedimentation coefficients of 4S2o.w (Fig. 3 A, 
fractions 8 and 9) and 8S20.w (fraction 7), respectively 
(Doms et al., 1987), it was apparent that the reduced G pro- 
tein was present in heterogeneous, noncovalenfly associated 
complexes. 

BiP/GRP78 Is Associated with the 
G Protein Complexes 

We have shown previously that BiP/GRP78 associates tran- 
siently and noncovalently with incompletely disulfide bonded 
folding intermediates of G protein (IT) (Machamer et al., 
1990). To determine whether the DTT-reduced G protein 
complexes in the ER also bound BiP/GRP78, we prepared 
cell lysates as described above except that a milder lysis 
buffer was used and apyrase was included in the lysis buffer 
to hydrolyze the ATP (see Materials and Methods). ATP 
removal is necessary for preserving the bonds between G 
protein and BiP/GRP78 (Machamer et al., 1990). Immuno- 
precipitation was performed with a monoclonal anti-BiP an- 
tibody, with a polyclonal anti-VSV serum and with the 1-14 
conformation-specific mAb mentioned above. The results in 
Fig. 3 C show that the G protein complexes were efficiently 
precipitated with the anti-BiP antibody. They were also 
precipitated with the polyclonal anti-VSV serum, but not 
with the 1-14 antibody. The DTT-reduced G protein was thus 
present in heterogeneous complexes up to several hundred 
kilodalton in molecular weight which associated with BiP/ 
GRP78. 

Are Noncovalent Complexes Present during 
Normal Folding? 

Although detectable amounts of covalent interchain disulfide 
cross-links do not occur during normal folding of G protein 
(Fig. 1 A), we were interested to determine whether some 
form of noncovalent assembly existed as transient intermedi- 
ate. Cells infected with wild-type (wt) VSV were pulsed for 
2 min and chased for 0, 2, or 20 min. At the end of each chase 
time, the cells were treated with NEM, lysed with Triton 
X-100, and the postnuclear supernatants were subjected to 
velocity gradient centrifugation. The G protein in the frac- 
tions was immunoprecipitated either with the polyclonal 
anti-VSV serum or with the mAb 1-14, and analyzed on SDS- 
PAGE under nonreducing conditions. 

After 0 and 2 min of chase (Fig. 4, A and C), the fully 
oxidized native form of the protein (NT) was recovered in 
fractions close to the top of the gradient in the position of 
monomeric G protein (Fig. 4, A and C, fractions 8 and 9; 
4S20.w). This form of G protein was precipitated by the 1-14 
antibody (Fig. 4, B and D). In contrast, a large fraction of 
the incompletely disulfide-bonded folding intermediates 
(IT), which were not precipitated by 1-14, were distributed 
across the gradient in heterogeneously sedimenting com- 
plexes (Fig. 4, A and C, fractions 2-9). Their sedimentation 
coefficients ranged from ,04 (fraction 9) to 2 1S20,w (fraction 
2). Intermediates with different electrophoretic mobility- 
because of different degrees of oxidation-were randomly 
distributed among the heterogeneously sized complexes, 
suggesting that individual complexes contained G proteins in 
different stages of folding. Some of the G protein sedimented 
as monomers. These monomers appeared to be somewhat 
enriched in the faster migrating (i.e., more oxidized) forms 
of IT. 

After 20 rain of chase, most of the G protein was fully oxi- 
dized and recognized by the 1-14 antibody (Fig. 4, E and F). 
It was recovered both as 4S monomers (Fig. 4, E and F,, frac- 
tions 8 and 9) and as 8S trimers (fractions, 6, 7) (Doms et 
al., 1987). A large fraction of the trimers was trimmed, indi- 
cating that they were already transported out of the ER. 
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Figure 4. G protein folding intermediates occur in large complexes. 
CHO15B cells infected with VSV were pulsed and chased at 37*C 
for 0 (A and B), 2 (C and D), or 20 (E and F) rain. Processing of 
the lysates was as in Fig. 3, A and B. Immunoprecipitation was with 
a mixture of P5IM and a rabbit polyclonal antiserum. (,4, C, and 
E) or with the conformation-specific mouse mAb 1-14 (B, D, and b). 

Taken together with our previous findings, these results in- 
dicated that immediately after release from the polysomes a 
large fraction of the full-length G protein subunits are as- 
sociated with each other or with preformed complexes of het- 
erogeneous sizes ranging from monomeric to ,'~700 kD. 
These G proteins then acquire more intrachain disulfide 
bonds until they are fully oxidized, whereupon they emerge 
from the complexes as native, folded monomers; they pro- 
ceed to trimerize and to exit the ER. Since the G protein 
leaves the complexes several minutes before trirnerization 
takes place, the complexes are not likely to play a role in 
oligomeric assembly but rather in the folding of the in- 
dividual subunits. Nor is it likely that the complexes contain 
folding intermediates of other proteins than G protein. This 
is because VSV infection effectively shuts off host protein 
synthesis. It is, on the other hand, clear that the complexes 
contain some BiP/GRP78 because the time period during 
which the G protein associates with complexes is precisely 
the period during which G protein is known to interact with 
BiP/GRP78 (Machamer et al., 1990). Since ATP was not 
depleted, the BiP/GRP78 association was not preserved dur- 
ing the gradient analysis. 

Folding of  ts045 G Protein 

Having analyzed the main steps in the maturation of wt G 
protein, it was of interest to study the fate of the temperature- 
sensitive folding mutant ts045 which has been used exten- 
sively as a tool in membrane transport studies. The relevant 
mutation in the G protein is located in the ectodomain, a 
conversion of residue 204 from phenylalanine to serine (Gal- 
lione and Rose, 1985). At the permissive temperature 
(32~ the G protein behaves like wt G protein. At nonper- 
missive temperature (39~ the mutant protein forms non- 
covalent aggregates (Doms et al., 1987; De Silva et al., 
1990; Machamer et al., 1990). In these, the B2 epitope is 
poorly expressed, one or more disulfide bonds are lacking, 
BiP/GRP78 is bound, and the protein remains trapped in the 
ER. Upon shifting to 32~ the G protein completes its fold- 
ing and assembles into transport-competent trimers (De 
Silva et al., 1990). 

We first determined the effects of DTT at 32~ Cells were 
infected with VSV ts045 virus, kept at 32~ and pulse la- 
beled in the presence of 5 mM DTT. As expected, the mutant 
G protein that was synthesized remained reduced and did not 
express the B2 epitope (Fig. 5, A and B, lane/). Velocity cen- 
trifugation showed that a majority was present as noncova- 
lent aggregates just like wt G protein synthesized in the pres- 
ence of DTT. When DTT was removed from the medium at 
32~ the folding pathway was the same as that described 
above for wt G protein after DTT wash-out (Fig. 5, A and 
B, lanes 1-5). 

When DTT was removed at 39~ (Fig. 5, A and B, lanes 
7-10), initial folding events appeared to occur in the same 
way as at 32~ disulfide cross-linked aggregates were 
formed (Fig. 5 A, lane 7), and subsequently most of the inter- 
chain disulfides disappeared (lanes 8-10). Judging by the gel 
mobility of G protein, most or all of the normal intrachain 
disulfides were formed. However, the protein expressed only 
little of the B2 epitope and remained untrimmed (Fig. 5, A 
and B, lanes 7-10). Therefore, upon the removal of DTT at 
39"C, the G protein fell just short of folding correctly in the 
ER. We showed previously that G protein remains trapped 
in BiP/GRP78 containing aggregates (Doms et al., 1987). 

Figure 5. Effect of DTT on ts045 G protein. 
CHO15B cells infected with VSV ts045 
were incubated with 5 mM DTT for 5 min 
before and during a 2-min pulse at 32"C 
(lane/). The chase was done at 32"C (lanes 
2-5) and 39~ (lanes 6-10) in medium with 
5 mM DTT for the first 5 rnin and then in 
DTT-free medium for the indicated times at 
32* and 39~ Lane/ / is  a sample of cells 
that were incubated with DTT in the chase 
medium for 40 rain at 32~ to show that 
DTT blocks the transport of ts045 G pro- 
tein. Processing was as in Fig. 2, except that 
a mixture of PSD4 and a rabbit polyelonal 
antiserum was used in A and C. Samples 
were subjected to 7.5 % SDS-PAGE under 
non_reducing (,4 and B) and reducing (C and 
D) conditions. Gs refers to a minor byprod- 
uct of G protein that is formed due to a pro- 
teolytic cleavage near the membrane- 
spanning domain. 
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Figure 6. ATP dependence of folding of VSV G protein. CHO15B 
cells infected with VSV were pulse labeled for 1 rain at 37~ and 
chased in medium with glucose (+ATP, lanes 1-5) or glucose-free 
medium containing 20 mM 2-deoxy-D-glucose and 10 mM sodium 
azide (-ATP, lanes 6-10) for the indicated times. Processing was as 
in Fig. 2. Analysis was by nonreducing (A and B) and reducing (C 
and D) 7.5% SDS-PAGE. 

We concluded that the folding problem for ts045 G protein 
at 39~ is manifested at a relatively late state in the folding 
process, when the G protein is almost fully oxidized but still 
part of a complex. It remains trapped in a conformation simi- 
lar to a late folding intermediate. This may explain why its 
phenotype is so easily reversed by temperature shifts. 

G Protein Folding Depends on Metabolic Energy 

We showed previously that the thermo-reversion of ts045 G 
protein upon temperature shift-down is ATP dependent 
(Doms et al., 1987). More recently, we observed that the 
influenza HA can only fold correctly if there is access to 
metabolic energy, presumably in the form of ATP (Braak- 
man et al., 1992b). To examine whether the folding of wt (3 
protein is also ATP dependent, CHO15B cells were infected 
with VSV, and the newly synthesized proteins were pulse la- 
beled with [3sS]cysteine and [35S]methionlne for 2 rain. At 
the end of the pulse, glucose-deficient chase medium con- 
taining sodium azide and 2-deoxy-D-glucose was added to 
deplete the cells of ATE Fig. 6 shows reduced and non- 
reduced samples derived from energy depleted and control 
cells. 

We found that, upon energy depletion, the newly synthe- 
sized (3 protein rapidly coalesced into disulfide-linked ag- 
gregates that collected on top of the stacking gel (Fig. 6 A, 
lanes 6-10). Some monomeric IT as well as the NT form of 
(3 protein were transiently present during the early stages of 
ATP depletion, but they subsequently lost their conforma- 
tion and became part of the aggregates. The new fully oxi- 
dized, B2-positive molecules present after short chase times 
disappeared concomitantly (Fig. 6, B and D, lanes 6-10). In 
control cells, the process of folding was normal (Fig. 6, lanes 
1-5). These results showed that metabolic energy was re- 
quired for the correct folding of newly synthesized (3 protein 
as well as for maintaining the conformational integrity of al- 
ready folded and oxidized {3 protein present in the ER. 

Discussion 

Multimolecular complexes and aggregates are commonly 
observed in the ER of living cells, but usually they contain 
only terminally misfolded proteins (Leavitt et al., 1977; Gib- 
son, 1979; Doms et al., 1988; Machamer and Rose, 1988b; 
Hurtley et al., 1989; Tooze et al., 1989; Valetti et al., 1991). 
Under extreme conditions such aggregates can reach the size 
of inclusion bodies. While the underlying reasons for mis- 
folding can be the presence of mutations in the proteins, the 
lack of N-linked glycosylation, or the incorporation of amino 
acid analogs, some proteins have a tendency to misfold spon- 
taneously during the maturation process (Hurtley et al., 
1989; Marquardt and Helenius, 1992). The aggregates that 
accumulate in the ER fi'equently contain interchain disulfide 
bonds and associate stably but noncovalently with BiP/GRF78 
(Hurtley et al., 1989; Hurtley and Helenius, 1989). When 
more than one misfolded protein species is present, mixed 
aggregates are observed (Tooze et al., 1989; Marquardt and 
Helenius, 1992). 

For the VSV G protein, aggregation was seen when 
glycosylation was inhibited by tunicamycin, and when muta- 
tions that modify the glycosylation sites had been introduced 
(Leavitt et al., 1977; Gibson, 1979; Gallione and Rose, 
1985; Doms et al., 1988; Machamer and Rose, 1988b). With 
exception of the ts045 G protein, a natural mutant that can 
be reversed by a temperature shift (Flarnand, 1970; Doms 
et al., 1987; De Silva et al., 1990), the aggregates have all 
been irreversible. The results presented here expand the 
repertoire of known conditions under which G protein com- 
plexes and aggregates occur in the ER, and demonstrate that 
G proteins undergoing normal folding may, in fact, tran- 
siently pass through an aggregated intermediate form. 

We found that the majority of the G proteins was present 
in multimolecular complexes during the first 1--4-rain period 
immediately after release from the polysomes, before reach- 
ing their fully oxidized, 1-14 positive, monomeric conforma- 
tion. They ranged in size from '~100 to 700 kD, and were, 
according to our previous results (Machamer et al., 1990), 
noncovalently associated with BiP/(3RP78. Since this is the 
time period during which the proteins acquire many of their 
intrachain disulfide bonds, it is possible that productive fold- 
ing may take place within the framework of these assem- 
blies. Since some of the incompletely oxidized folding inter- 
mediates of G protein sedimented as monomers, we cannot, 
however, rule out the possibility that the G proteins in the 
complexes are in equilibrium with monomeric forms, and 
that the latter are the actively folding species. In this case, 
the progress of folding could depend on the transient release 
of (3 protein subunits from the aggregates. The failure of 
such protein recycling between an aggregated and a mono- 
meric state could result in folding problems, as observed for 
instance after ATP depletion. 

The heterogeneous size of the complexes argues against 
the notion that they represent homogeneous folding particles 
equivalent to those observed for homologs of HSP60 in mi- 
tochondria, bacteria, and chloroplasts (Cheng et al., 1989; 
Hubbard and Sander, 1991; Langer et al., 1992). As far as 
known, HSP60 has no homologs in the ER. The only chaper- 
one that we know so far to be part of these ER complexes 
is BiP/GRP78 (Machamer et al., 1990). 
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It seems more likely that the complexes reflect the general 
tendency of folding intermediates to aggregate due to their 
hydrophobic surface properties. This phenomenon has been 
extensively analyzed during in vitro refolding studies with 
numerous proteins (Jaenicke, 1987; Mitraki and King, 1989; 
Kiefhaber et al., 1991). It is more pronounced at higher pro- 
tein concentrations and at higher temperatures. While such 
aggregation in vitro generally competes with normal folding 
and lowers the refolding efficiency, there are cases where ag- 
gregates appear transiently during the refolding process as 
they do in our in vivo experiments (Brems, 1988). This sug- 
gests that even in the absence of chaperones, protein folding 
can proceed in spite of aggregate formation, if conditions are 
favorable. 

While in the ER of the living cell the chaperones and fold- 
ing enzymes help prevent aggregation and nonproductive in- 
teractions (see Rothman, 1989; Gatenby and Ellis, 1990; 
Hubbard and Sander, 1991; Gething and Sambrook, 1992), 
such reactions are not always entirely suppressed. Whether 
a given protein undergoes aggregation and misfolding or not, 
and whether the aggregates are permanent or transient, prob- 
ably depends on many factors including the structure of the 
protein, the concentration and expression level, the rate of 
folding, and the concentration of available folding enzymes 
and chaperones. In cases such as the G protein, where aggre- 
gate formation is transient, the chaperones and folding en- 
zymes may function to prevent the formation of irreversible 
intermolecular interactions within aggregates, and thus al- 
low folding to proceed normally and efficiently. 

The view that aggregates represent problematic side prod- 
uets during protein folding in the ER is supported by our data 
on G protein folding in the presence of various inhibitors. We 
observed that disulfide cross-linked aggregates were formed 
when cells were depleted of ATE Similar aggregates after 
ATP depletion were previously seen for influenza HA 
(Braakman et al., 1992b). Apparently, energy requiring 
processes such as the reversible association of BiP/GRP78 
with the folding intermediates (Rothman, 1989) are needed 
to secure the fidelity of folding and to prevent the formation 
of covalent cross-links within aggregates. During protein 
folding in mitochondria and the cytosol, ATP is required to 
drive chaperones of the HSP60 and HSP70 families, both of 
which have a central role in protein folding (see Martin et 
al., 1991; Gething and Sambrook, 1992). We assume, al- 
though we have no direct evidence, that the involvement of 

chaperones also explains the energy dependence of G protein 
folding in the ER. 

How common are aggregated folding intermediates in liv- 
ing cells? In a recent paper on the maturation of thyroglobu- 
lin, Kim and Aryan (1991) reported that this large soluble 
glycoprotein passed through an aggregated intermediate 
while still in the lumen of the ER. Thyroglobulin is a large 
highly disulfide cross-linked protein which takes a long time 
to fold and mature within the ER. The hemagglutinin- 
neuraminidase glycoprotein of human parainfluenza virus 
type 3 has also recently been found to be present in some 
type of complex while still in the ER (Collins and Mottet, 
1991). In this case it was suggested that the complexes were 
not only sites of subunit folding but also of tetrameric assem- 
bly. Studies with phage proteins that fold in the cytosol of 
bacteria have, moreover, implied a relationship between 
some aggregated states and folding intermediates (Mitraki 
and King, 1989; Mitraki et al., 1991). Transient aggregation 
of proteins during folding may thus be quite a common 
phenomenon, although we do not think, on the basis of pre- 
liminary experiments with HA, that it applies to all newly 
synthesized polypeptides in the ER. 

While the demonstration of transient complexes during the 
normal folding process raises numerous questions about the 
mechanisms of folding, it also provides explanations for 
some puzzling observations. We noted some time ago that 
the fraction of misfolded HA generated as a side product dur- 
ing HA synthesis in CV-1 cells enters aggregates in less than 
a minute after chain-termination (Hurtley et al., 1989; Mar- 
quardt and Helenius, 1992). The HA stays aggregated there- 
after as if selectively separated from the polypeptide chains 
that proceed to fold correctly. It was difficult to understand 
how they could be recognized as misfolded and segregated 
by the cellular system already before any of the HA mole- 
cules had had time to fold. Our present findings raise the 
possibility that all newly released chains may enter some 
type of complex after synthesis, but only those that are able 
to fold correctly can leave them. The misfolded molecules 
may be left behind in the folding complexes; when enough 
of them accumulate, they may coalesce to form inclusion 
bodies. 

The formation of complexes between folding intermedi- 
ates also helps to explain the origin of the transient interchain 
disulfides formed after DTT wash-out. The presence of DTT 
prevented disulfide bond formation and froze the folding pro- 

Figure 7. G protein folding in the ER. This 
schematic representation of the various conforma- 
tional and multimolccular forms that G protein can 
have in the ER is based on experiments reported 
here as well as in our previous reports (Doms et 
al., 1987, 1988; De Silva et al., 1990; Machamer 
et al., 1990). The normal folding pathway is indi- 
cated by bold boxes. The effects of DTT addition 
and removal and of ATP depletion are shown. Ag- 
gregates and complexes are shown as stacks and 
interchain disulfide bonds by brackets attached to 
the stacks. The step where the folding of ts045 G 
protein is blocked at 39~ is also indicated. 

de Silva et al. Folding Complexes in the ER 653 



cess in an early stage when the G protein was in large 
BiP/GRP78 associated complexes. When the DTT was 
washed out, the redox conditions returned to normal, 
disulfide bond formation started, and aberrant interchain 
cross-links formed between neighboring molecules in the 
complexes. After a delay of •10 rain, the aberrant disulfides 
were eliminated in favor of correct intrachain disulfides and 
normal oxidized G protein subunlts appeared. Reshuffling of 
disulfides within the complexes must have occurred to make 
this transition possible. The conformational rescue opera- 
tion involved was most likely dependent on folding enzymes 
such as protein disulfide isomerase (Freedman, 1989; Noiva 
and Lennarz, 1992) and chaperones such as BiP/GRP78. 
These results provide an example of disulfide-exchange 
within the ER of living cells which leads to correct folding, 
and a demonstration that conformational modifications are 
possible even though proteins are aggregated. 

Finally, the complex formation may have provided a par- 
tial explanation for the selectivity in the transport of G pro- 
tein from the ER to the Golgi complex. While trimers of G 
protein can be transported efficiently to the Golgi, folding in- 
termediates and misfolded proteins cannot (Rose and Doms, 
1988; Hurtley and Helenius, 1989). We have recently ob- 
served (Hammond, C., and A. Helenius, unpublished 
results) that rapid transport of G protein from the ER to the 
intermediate compartment between the ER and the Golgi 
complex (Saraste and Kuismanen, 1984; Schweizer et al., 
1988; Pelham, 1989) only occurs when the G protein is fully 
oxidized. The aggregated state of G protein during the fold- 
ing phase may play a role in inhibiting its premature exit 
from the ER. 

The stepwise progress of G protein folding in the ER is 
schematically depicted in Fig. 7. Normal folding (shown in 
bold boxes) begins on nascent chains, proceeds through a se- 
ries of ATP dependent, posttranslational folding steps during 
which the G protein is present in aggregates associated with 
BiP/GRP78. The oxidized monomers that emerge are still 
dependent on ATP for their stability. They proceed to trimer- 
ize and exit from the ER. Fig. 7 also summarizes the effects 
of DTT addition and ATP removal, and indicates at which 
step in the pathway ts045 G protein folding is blocked at non- 
permissive temperature. When compared with influenza 
HA, whose folding in the ER is also quite well understood, 
G protein displays many similarities. The most important 
differences are the presence of transient aggregates and the 
transient binding of BiP/GRP78, neither of which we have 
been able to demonstrate for HA. 
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